Mononuclidic element

Last updated
Mononuclidic and monoisotopic (19 elements)
Two mononuclidic, but radioactive elements (bismuth and protactinium) Monoisotopic, mononuclidic, radioactive elements.svg
  Mononuclidic and monoisotopic (19 elements)
   Two mononuclidic, but radioactive elements (bismuth and protactinium)

A mononuclidic element or monotopic element [1] is one of the 21 chemical elements that is found naturally on Earth essentially as a single nuclide (which may, or may not, be a stable nuclide). This single nuclide will have a characteristic atomic mass. Thus, the element's natural isotopic abundance is dominated by one isotope that is either stable or very long-lived. There are 19 elements in the first category (which are both monoisotopic and mononuclidic), and 2 (bismuth [lower-alpha 1] and protactinium) in the second category (mononuclidic but not monoisotopic, since they have zero, not one, stable nuclides). A list of the 21 mononuclidic elements is given at the end of this article.

Contents

Of the 26 monoisotopic elements that, by definition, have only one stable isotope, seven are not considered mononuclidic, due to the presence of a significant fraction of a very long-lived (primordial) radioisotope. These elements are vanadium, rubidium, indium, lanthanum, europium, lutetium, and rhenium.

Use in metrology

Many units of measurement were historically, or are still, defined with reference to the properties of specific substances that, in many cases, occurred in nature as mixes of multiple isotopes, for example:

Unit Dimension Reference substanceRelevant propertyNumber of common isotopesCurrent (2022) status
Second Time Caesium Hyperfine transition frequency 1 Still in use and one of the 7 SI base units [2]
Metre Length Krypton Transition wavelength 6 Redefined in 1983 [3]
Multiple Temperature Water Melting point, boiling point, and triple point 2 of hydrogen and 3 of oxygen Redefined in 2019 [4] or defunct
Calorie and British thermal unit Energy Water Specific heat capacity 2 of hydrogen and 3 of oxygen Calorie redefined in terms of the joule, BTU still in use. [5] Neither unit is part of, or recommended for use in, the SI
Mole Amount of substance Carbon Atomic mass 3 Redefined in 2019 [6]
Dalton Mass CarbonAtomic mass3Still in use and accepted for use in (but not part of) the SI [7]
Candela Luminous intensity Platinum Luminance at melting point 6 Redefined in 1979 [8]
Millimetre of mercury Pressure Mercury Density 7 Redefined in terms of the pascal, not part of, or recommended for use in, the SI

Since samples taken from different natural sources can have subtly different isotopic ratios, the relevant properties can differ between samples. If the definition simply refers to a substance without addressing the isotopic composition, this can lead to some level of ambiguity in the definition and variation in practical realizations of the unit by different laboratories, as was observed with the kelvin before 2007. [9] If the definition refers only to one isotope (as that of the dalton does) or to a specific isotope ratio, e.g. Vienna Standard Mean Ocean Water, this removes a source of ambiguity and variation, but adds layers of technical difficulty (preparing samples of a desired isotopic ratio) and uncertainty (regarding how much an actual reference sample differs from the nominal ratio). The use of mononuclidic elements as reference material sidesteps these issues and notably the only substance referenced in the most recent iteration of the SI is caesium, a mononuclidic element.

Mononuclidic elements are also of scientific importance because their atomic weights can be measured to high accuracy, since there is minimal uncertainty associated with the isotopic abundances present in a given sample. Another way of stating this, is that, for these elements, the standard atomic weight and atomic mass are the same. [10]

In practice, only 11 of the mononuclidic elements are used in standard atomic weight metrology. These are aluminium, bismuth, caesium, cobalt, gold, manganese, phosphorus, scandium, sodium, terbium, and thorium. [11]

In nuclear magnetic resonance spectroscopy (NMR), the three most sensitive stable nuclei are hydrogen-1 (1H), fluorine-19 (19F) and phosphorus-31 (31P). Fluorine and phosphorus are monoisotopic, with hydrogen nearly so. 1H NMR, 19F NMR and 31P NMR allow for identification and study of compounds containing these elements.

Contamination by unstable trace isotopes

Trace concentrations of unstable isotopes of some mononuclidic elements are found in natural samples. For example, beryllium-10 (10Be), with a half-life of 1.4 million years, is produced by cosmic rays in the Earth's upper atmosphere; iodine-129 (129I), with a half-life of 15.7 million years, is produced by various cosmogenic and nuclear mechanisms; caesium-137 (137Cs), with a half-life of 30 years, is generated by nuclear fission. Such isotopes are used in a variety of analytical and forensic applications.

List of the 21 mononuclidic elements

Isotopic mass data from Atomic Weights and Isotopic Compositions ed. J. S. Coursey, D. J. Schwab and R. A. Dragoset, National Institute of Standards and Technology (2005).

ElementMost stable nuclideZ (p)N (n)Isotopic mass (Da) Half-life Second most stable nuclideN (n)Half-life
beryllium 9Be 459.012 182(3)Stable10Be61.387(12)×106 y
fluorine 19F 91018.998 403 2(5)Stable18F9109.739(9) min
sodium 23Na 111222.989 770(2)Stable22Na112.6018(22) y
aluminium 27Al 131426.981 538(2)Stable 26Al 137.17(24)×105 y
phosphorus 31P 151630.973 761(2)Stable33P1825.35(11) d
scandium 45Sc 212444.955 910(8)Stable46Sc2583.79(4) d
manganese 55Mn 253054.938 049(9)Stable53Mn283.7(4)×106 y
cobalt 59Co 273258.933 200(9)Stable 60Co 335.2713(8) y
arsenic 75As 334274.921 60(2)Stable73As4080.30(6) d
yttrium 89Y 395088.905 85(2)Stable88Y49106.616(13) d
niobium 93Nb 415292.906 38(2)Stable92Nb513.47(24)×107 y
rhodium 103Rh 4558102.905 50(2)Stable 102mRh 573.742(10) y
iodine 127I 5374126.904 47(3)Stable 129I 761.57(4)×107 y
caesium 133Cs 5578132.905 45(2)Stable135Cs802.3×106 y
praseodymium 141Pr 5982140.907 65(2)Stable143Pr8413.57(2) d
terbium 159Tb 6594158.925 34(2)Stable158Tb93180(11) y
holmium 165Ho 6798164.930 32(2) Observationally stable 163Ho974570(25) y
thulium 169Tm 69100168.934 21(2)Observationally stable171Tm1021.92(1) y
gold 197Au 79118196.966 55(2)Observationally stable195Au116186.098(47) d
bismuth 209Bi 83126208.980 38(2)2.01(8)×1019 y 210mBi 1273.04(6)×106 y
protactinium 231Pa 91140231.035 88(2)3.276(11)×104 y233Pa14226.975(13) d

See also

Notes

  1. Until 2003, 209Bi was thought to be in the first category. It was then found to have a half-life of 1019 years, about a billion times the age of the universe. See Bismuth

Related Research Articles

A chemical element is a chemical substance that cannot be broken down into other substances. The basic particle that constitutes a chemical element is the atom, and each chemical element is distinguished by the number of protons in the nuclei of its atoms, known as its atomic number. For example, oxygen has an atomic number of 8, meaning that each oxygen atom has 8 protons in its nucleus. This is in contrast to chemical compounds and mixtures, which contain atoms with more than one atomic number.

The molecular mass (m) is the mass of a given molecule, for which the unit dalton (Da) is used. Different molecules of the same compound may have different molecular masses because they contain different isotopes of an element. The related quantity relative molecular mass, as defined by IUPAC, is the ratio of the mass of a molecule to the atomic mass constant (which is equal to one dalton) and is unitless. The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of a substance and is expressed in g/mol. That makes the molar mass an average of many particles or molecules, and the molecular mass the mass of one specific particle or molecule. The molar mass is usually the more appropriate quantity when dealing with macroscopic (weigh-able) quantities of a substance.

<span class="mw-page-title-main">Stable nuclide</span> Nuclide that does not undergo radioactive decay

Stable nuclides are nuclides that are not radioactive and so do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.

<span class="mw-page-title-main">Nuclide</span> Atomic species

A nuclide is a class of atoms characterized by their number of protons, Z, their number of neutrons, N, and their nuclear energy state.

<span class="mw-page-title-main">Decay chain</span> Series of radioactive decays

In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". The typical radioisotope does not decay directly to a stable state, but rather it decays to another radioisotope. Thus there is usually a series of decays until the atom has become a stable isotope, meaning that the nucleus of the atom has reached a stable state.

Relative atomic mass, also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass constant. The atomic mass constant is defined as being 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless. These definitions remain valid even after the 2019 redefinition of the SI base units.

Fluorine (9F) has 18 known isotopes ranging from 13
F
to 31
F
and two isomers. Only fluorine-19 is stable and naturally occurring in more than trace quantities; therefore, fluorine is a monoisotopic and mononuclidic element.

Gold (79Au) has one stable isotope, 197Au, and 37 radioisotopes, with 195Au being the most stable with a half-life of 186 days. Gold is currently considered the heaviest monoisotopic element. Bismuth formerly held that distinction until alpha-decay of the 209Bi isotope was observed. All isotopes of gold are either radioactive or, in the case of 197Au, observationally stable, meaning that 197Au is predicted to be radioactive but no actual decay has been observed.

Although phosphorus (15P) has 22 isotopes from 26P to 47P, only 31P is stable; as such, phosphorus is considered a monoisotopic element. The longest-lived radioactive isotopes are 33P with a half-life of 25.34 days and 32P with a half-life of 14.268 days. All others have half-lives of under 2.5 minutes, most under a second. The least stable known isotope is 47P, with a half-life of 2 milliseconds.

<span class="mw-page-title-main">Isotopes of beryllium</span> Nuclides with atomic number of 4 but with different mass numbers

Beryllium (4Be) has 11 known isotopes and 3 known isomers, but only one of these isotopes is stable and a primordial nuclide. As such, beryllium is considered a monoisotopic element. It is also a mononuclidic element, because its other isotopes have such short half-lives that none are primordial and their abundance is very low. Beryllium is unique as being the only monoisotopic element with both an even number of protons and an odd number of neutrons. There are 25 other monoisotopic elements but all have odd atomic numbers, and even numbers of neutrons.

<span class="mw-page-title-main">Standard atomic weight</span> Relative atomic mass as defined by IUPAC (CIAAW)

The standard atomic weight of a chemical element (symbol Ar°(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, isotope 63Cu (Ar = 62.929) constitutes 69% of the copper on Earth, the rest being 65Cu (Ar = 64.927), so

<span class="mw-page-title-main">Isotope</span> Different atoms of the same element

Isotopes are distinct nuclear species of the same chemical element. They have the same atomic number and position in the periodic table, but differ in nucleon numbers due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties.

<span class="mw-page-title-main">Atomic mass</span> Rest mass of an atom in its ground state

The atomic mass (ma or m) is the mass of an atom. Although the SI unit of mass is the kilogram (symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1 Da is defined as 112 of the mass of a free carbon-12 atom at rest in its ground state. The protons and neutrons of the nucleus account for nearly all of the total mass of atoms, with the electrons and nuclear binding energy making minor contributions. Thus, the numeric value of the atomic mass when expressed in daltons has nearly the same value as the mass number. Conversion between mass in kilograms and mass in daltons can be done using the atomic mass constant .

<span class="mw-page-title-main">Phosphorus-31 nuclear magnetic resonance</span> Spectroscopy technique for molecules containing phosphorus

Phosphorus-31 NMR spectroscopy is an analytical chemistry technique that uses nuclear magnetic resonance (NMR) to study chemical compounds that contain phosphorus. Phosphorus is commonly found in organic compounds and coordination complexes, making it useful to measure 31P NMR spectra routinely. Solution 31P-NMR is one of the more routine NMR techniques because 31P has an isotopic abundance of 100% and a relatively high gyromagnetic ratio. The 31P nucleus also has a spin of 12, making spectra relatively easy to interpret. The only other highly sensitive NMR-active nuclei spin 12 that are monoisotopic are 1H and 19F.

<span class="mw-page-title-main">Fluorine-19 nuclear magnetic resonance spectroscopy</span> Analytical technique

Fluorine-19 nuclear magnetic resonance spectroscopy is an analytical technique used to detect and identify fluorine-containing compounds. 19F is an important nucleus for NMR spectroscopy because of its receptivity and large chemical shift dispersion, which is greater than that for proton nuclear magnetic resonance spectroscopy.

<span class="mw-page-title-main">Primordial nuclide</span> Nuclides predating the Earths formation (found on Earth)

In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the interstellar medium from which the solar system was formed, and were formed in, or after, the Big Bang, by nucleosynthesis in stars and supernovae followed by mass ejection, by cosmic ray spallation, and potentially from other processes. They are the stable nuclides plus the long-lived fraction of radionuclides surviving in the primordial solar nebula through planet accretion until the present; 286 such nuclides are known.

<span class="mw-page-title-main">Monoisotopic element</span> Element that has only a single stable isotope

A monoisotopic element is an element which has only a single stable isotope (nuclide). There are 26 such elements, as listed.

<span class="mw-page-title-main">Even and odd atomic nuclei</span> Nuclear physics classification method

In nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model. This difference of nuclear binding energy between neighbouring nuclei, especially of odd-A isobars, has important consequences for beta decay.

References

  1. Housecroft, C. E.; Sharpe, A. G. (2012). Inorganic Chemistry (4th ed.). Prentice Hall. p. 2. ISBN   978-0273742753.
  2. "Second - BIPM".
  3. "Metre - BIPM".
  4. "Kelvin - BIPM".
  5. "British thermal units (Btu) - U.S. Energy Information Administration (EIA)".
  6. "Mole - BIPM".
  7. https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf/2d2b50bf-f2b4-9661-f402-5f9d66e4b507 [ bare URL PDF ]
  8. "Candela - BIPM".
  9. "Resolution 10 - BIPM".
  10. N. E. Holden, "Standard Atomic Weight Values for the Mononuclidic Elements - 2001," BNL-NCS-68362, Brookhaven National Laboratory (2001)
  11. IUPAC list of mononuclidics for metrology purposes