Multi-ringed basin

Last updated
Valhalla Basin on Jupiter's moon Callisto, taken by Voyager 1 Valhalla Basin from Voyager 1.jpg
Valhalla Basin on Jupiter's moon Callisto, taken by Voyager 1

A multi-ringed basin (also a multi-ring impact basin) is not a simple bowl-shaped crater, or a peak ring crater, but one containing multiple concentric topographic rings; [1] a multi-ringed basin could be described as a massive impact crater, surrounded by circular chains of mountains [2] resembling rings on a bull's-eye. A multi-ringed basin may have an area of many thousands of square kilometres. [3]

Contents

An impact crater of diameter bigger than about 180 miles (290 km) is referred to as a basin. [4]

Structure

In adjacent rings, the ratio of the diameters approximates 2:1 ≈ 1.41 to 1. [5] [6] [7]

Formation

Mare Orientale, on Earth's Moon Mare Orientale (Lunar Orbiter 4).png
Mare Orientale, on Earth's Moon

To start, a peak ring crater has

A multi-ringed basin has an important difference, which is multiple peak-rings.

In extremely large collisions, following the impact the rebound of the surface can obliterate any trace of the initial impact point. Usually, a peak ring crater has a high structure with a terrace and has slump structures inside of it. In 2016, research brought forward new theories about the formation of the lunar mare called Mare Orientale on Earth's Moon. [8]

Multi-ring basins are some of the largest, oldest, rarest and least understood of impact craters. There are various theories to explain the formation of multi-ringed basins, however there is currently no consensus. [9] [10]

Examples

Chicxulub crater in Mexico has a sufficient area to have been a multi-ringed basin, [12]

See also

Related Research Articles

<span class="mw-page-title-main">Impact crater</span> Circular depression in a solid astronomical body formed by the impact of a smaller object

An impact crater is a depression in the surface of a solid astronomical body formed by the hypervelocity impact of a smaller object. In contrast to volcanic craters, which result from explosion or internal collapse, impact craters typically have raised rims and floors that are lower in elevation than the surrounding terrain. Impact craters are typically circular, though they can be elliptical in shape or even irregular due to events such as landslides. Impact craters range in size from microscopic craters seen on lunar rocks returned by the Apollo Program to simple bowl-shaped depressions and vast, complex, multi-ringed impact basins. Meteor Crater is a well-known example of a small impact crater on Earth.

<span class="mw-page-title-main">Mare Orientale</span> Lunar mare on the western border of the near side and far side of the Moon

Mare Orientale is a lunar mare. It is located on the western border of the near side and far side of the Moon, and is difficult to see from an Earthbound perspective. Images from spacecraft have revealed it to be one of the most striking large scale lunar features, resembling a target ring bullseye.

<span class="mw-page-title-main">Mare Marginis</span> Lunar mare

Mare Marginis ; MAR-jin-iss) is a lunar mare that lies on the very edge of the lunar nearside. The selenographic coordinates of this feature are 13.3° N, 86.1° E, and the diameter is 358 km.

<span class="mw-page-title-main">Caloris Planitia</span> Crater on Mercury

Caloris Planitia is a plain within a large impact basin on Mercury, informally named Caloris, about 1,550 km (960 mi) in diameter. It is one of the largest impact basins in the Solar System. "Calor" is Latin for "heat" and the basin is so-named because the Sun is almost directly overhead every second time Mercury passes perihelion. The crater, discovered in 1974, is surrounded by the Caloris Montes, a ring of mountains approximately 2 km (1.2 mi) tall.

<span class="mw-page-title-main">Valhalla (crater)</span> Large multi-ring impact crater on Jupiters moon Callisto

Located on Jupiter's moon Callisto, Valhalla is the largest multi-ring impact crater in the Solar System. It is named after Valhalla, the hall where warriors are taken after death in Norse mythology.

<span class="mw-page-title-main">Chalonge (crater)</span> Crater on the Moon

Chalonge is a lunar impact crater that is located on the far side of the Moon. It lies to the southwest of the larger crater Lewis, in the outer skirt of ejecta that surrounds the Mare Orientale impact basin. To the southeast are the Montes Cordillera, a ring of mountains that encircle the Mare Orientale formation.

<span class="mw-page-title-main">Montes Rook</span> Mountain range on the Moon

Montes Rook is a ring-shaped mountain range that lies along the western limb of the Moon, crossing over to the far side. It completely encircles the Mare Orientale, and forms part of a massive impact basin feature. This range in turn is encircled by the larger Montes Cordillera, which is separated from the Montes Rook by a rugged, ring-shaped plain.

<span class="mw-page-title-main">Geology of Mercury</span> Geologic structure and composition of planet Mercury

The geology of Mercury is the scientific study of the surface, crust, and interior of the planet Mercury. It emphasizes the composition, structure, history, and physical processes that shape the planet. It is analogous to the field of terrestrial geology. In planetary science, the term geology is used in its broadest sense to mean the study of the solid parts of planets and moons. The term incorporates aspects of geophysics, geochemistry, mineralogy, geodesy, and cartography.

<span class="mw-page-title-main">Lacus Veris</span> Feature on the moon

Lacus Veris is a small lunar mare on the Moon. In selenographic coordinates, the mare centered at 16.5° S, 86.1° W and is approximately 396 km long. The mare extends along an irregular 90° arc from east to north that is centered on the Mare Orientale, covering an area of about 12,000 km2. Author Eric Burgess proposed this mare as the location of a future crewed lunar base, citing a 1989 study performed at the NASA Johnson Space Center.

<span class="mw-page-title-main">Borealis quadrangle</span> Quadrangle on Mercury

The Borealis quadrangle is a quadrangle on Mercury surrounding the north pole down to 65° latitude. It was mapped in its entirety by the MESSENGER spacecraft, which orbited the planet from 2008 to 2015, excluding areas of permanent shadow near the north pole. Only approximately 25% of the quadrangle was imaged by the Mariner 10 spacecraft during its flybys in 1974 and 1975. The quadrangle is now called H-1.

<span class="mw-page-title-main">Tolstoj quadrangle</span> Quadrangle on Mercury

The Tolstoj quadrangle in the equatorial region of Mercury runs from 144 to 216° longitude and -25 to 25° latitude. It was provisionally called "Tir", but renamed after Leo Tolstoy by the International Astronomical Union in 1976. Also called Phaethontias.

<span class="mw-page-title-main">Shakespeare quadrangle</span> Quadrangle on Mercury

The Shakespeare quadrangle is a region of Mercury running from 90 to 180° longitude and 20 to 70° latitude. It is also called Caduceata.

The Caloris group is a set of geologic units on Mercury. McCauley and others have proposed the name “Caloris Group” to include the mappable units created by the impact that formed the Caloris Basin and have formally named four formations within the group, which were first recognized and named informally by Trask and Guest based on imagery from the Mariner 10 spacecraft that flew by Mercury in 1974 and 1975. The extent of the formations within the group have been expanded and refined based on imagery and other data from the MESSENGER spacecraft which orbited Mercury from 2011 to 2015, and imaged parts of the planet that were in shadow at the time of the Mariner 10 encounters.

<span class="mw-page-title-main">Bach quadrangle</span> Quadrangle on Mercury

The Bach quadrangle encompasses the south polar part of Mercury poleward of latitude 65° S. It is named after the prominent crater Bach within the quadrangle, which is in turn named after Baroque composer Johann Sebastian Bach. The quadrangle is now called H-15.

<span class="mw-page-title-main">Beethoven (crater)</span> Crater on Mercury

Beethoven is a crater at latitude 20°S, longitude 124°W on Mercury. It is 630 km in diameter and was named after Ludwig van Beethoven. It is the eleventh largest named impact crater in the Solar System and the third largest on Mercury.

<span class="mw-page-title-main">Michelangelo quadrangle</span> Quadrangle on Mercury

The Michelangelo quadrangle is in the southern hemisphere of the planet Mercury, where the imaged part is heavily cratered terrain that has been strongly influenced by the presence of multiring basins. At least four such basins, now nearly obliterated, have largely controlled the distribution of plains materials and structural trends in the map area. Many craters, interpreted to be of impact origin, display a spectrum of modification styles and degradation states. The interaction between basins, craters, and plains in this quadrangle provides important clues to geologic processes that have formed the morphology of the mercurian surface.

<span class="mw-page-title-main">Complex crater</span> Large impact craters with uplifted centres

Complex craters are a type of large impact crater morphology. Complex craters are classified into two groups: central-peak craters and peak-ring craters. Peak-ring craters have diameters that are larger in than central-peak craters and have a ring of raised massifs which are roughly half the rim-to-rim diameter, instead of a central peak.

<span class="mw-page-title-main">Renoir (crater)</span> Crater on Mercury

Renoir is a crater on the planet Mercury. Its name, after the French painter Pierre-Auguste Renoir (1841–1919), was adopted by the International Astronomical Union in 1976.

<span class="mw-page-title-main">Pre-Tolstojan</span>

Pre-Tolstojan, also Pretolstojan Period, refers to the oldest period of the history of Mercury, 4500–3900 MYA. It is the "first period of the Eomercurian Era and of the Mercurian Eon, as well as being the first period in Mercury's geologic history", and refers to its formation and the 600 million or so years in its aftermath. Mercury was formed with a tiny crust, mantle, and a giant core and as it evolved it faced heavy bombardments that created most of the craters and intercrater plains seen on the planet's surface today. Many of the smaller basins and multi-ring basins were created during this period. Considered a "dead" planet, its geology is highly diverse with craters forming the dominant terrain.

<span class="mw-page-title-main">Burney (crater)</span> Multi-ring impact basin on Pluto

Burney, sometimes referred to as the Burney basin, is the second-largest known impact basin on the dwarf planet Pluto. With a diameter of over 290 kilometers and possibly up to 350 kilometers, it is the second-largest known impact basin on Pluto, after the Sputnik Planitia basin. Burney is the only impact basin with visible multiple rings known on Pluto and is thus classified as a multi-ringed impact basin, though its rings have been heavily eroded due to Burney's age.

References

  1. Head, J. W. (January 2010). "Transition from complex craters to multi-ringed basins on terrestrial planetary bodies: Scale-dependent role of the expanding melt cavity and progressive interaction with the displaced zone". Geophysical Research Letters. 37 (2). doi:10.1029/2009GL041790.
  2. "Lunar Landforms Teacher Page". Hawai'i Space Grant Consortium, Hawai'i Institute of Geophysics and Planetology, University of Hawai'i. 1998. Archived from the original on 12 February 2018. Retrieved 18 January 2019.
  3. "Multiringed basin". Encyclopedia Britannica. February 1, 2018. Retrieved January 20, 2019.
  4. "How Multi-Ring Craters Form Revealed by New Research". Ideas, Inventions And Innovations. October 29, 2016. Archived from the original on 1 July 2017.{{cite web}}: CS1 maint: unfit URL (link)[ self-published source? ]
  5. "Multi-Ring Basin". Encyclopedia.com. Retrieved January 20, 2019.
  6. Moons & Planets, William K. Hartmann, 2005, p.255ff
  7. Martellato, Elena (January 31, 2011). The importance of being a crater: A tool in planetary surface analysis and datation (PDF) (PhD Thesis). Università degli Studi di Padova. Retrieved January 20, 2019.
  8. Stacey, Kevin (October 27, 2016). "Research helps explain formation of ringed crater on the Moon". News from Brown. Retrieved 20 January 2019.
  9. Potter, Ross W.K. (November 2015). "Investigating the onset of multi-ring impact basin formation". Icarus. 261: 91–99. doi:10.1016/j.icarus.2015.08.009.
  10. Stuart Ross Taylor (1982). "Meteorite impacts, craters and multi-ring basins" (PDF). Planetary Science: A Lunar Perspective. Lunar and Planetary Institute. Retrieved 19 January 2019.
  11. Chu, Jennifer (October 27, 2016). "Retracing the origins of a massive, multi-ring crater". MIT News. Retrieved 20 January 2019.
  12. McKinnon, W. B.; Alexopoulos, J. S. (January 1994). "Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution". KT Event and Other Catastrophes. hdl:2060/19940023803.