Terrace (geology)

Last updated
Sediments underlying fluvial terrace exposed in cutbanks along the Manu River, Peru Manu riverbank.jpg
Sediments underlying fluvial terrace exposed in cutbanks along the Manú River, Peru

In geology, a terrace is a step-like landform. A terrace consists of a flat or gently sloping geomorphic surface, called a tread, that is typically bounded on one side by a steeper ascending slope, which is called a "riser" or "scarp". The tread and the steeper descending slope (riser or scarp) together constitute the terrace. Terraces can also consist of a tread bounded on all sides by a descending riser or scarp. A narrow terrace is often called a bench. [1] [2]

Contents

The sediments underlying the tread and riser of a terrace are also commonly, but incorrectly, called terraces, leading to confusion.

Terraces are formed in various ways.

Fluvial terraces

Fluvial terraces are remnants of the former floodplain of a stream or river. They are formed by the downcutting of a river or stream channel into and the abandonment and lateral erosion of its former floodplain. The downcutting, abandonment, and lateral erosion of a former floodplain can be the result of either changes in sea level, local or regional tectonic uplift; changes in local or regional climate; changes in the amount of sediment being carried by the river or stream; change in discharge of the river; or a complex mixture of these and other factors. The most common sources of the variations in rivers and streams that create fluvial terraces are vegetative, geomorphic, and hydrologic responses to climate. More recently, the direct modification of rivers and streams and their watersheds by cultural processes have resulted in the development of terraces along many rivers and streams. [1] [3]

Hypothetical valley cross-section illustrating a complex sequence of aggradational (fill) and degradational (cut and strath) terraces and deposits (upland gravels). Note ct = cut terraces, ft = fill terraces, ft(b) = buried fill terrace, fp = active floodplain, st = strath terrace, and ug = upland gravels. FluvialTerraces.jpg
Hypothetical valley cross-section illustrating a complex sequence of aggradational (fill) and degradational (cut and strath) terraces and deposits (upland gravels). Note ct = cut terraces, ft = fill terraces, ft(b) = buried fill terrace, fp = active floodplain, st = strath terrace, and ug = upland gravels.

Kame terraces

Kame terraces are formed on the side of a glacial valley and are the deposits of meltwater streams flowing between the ice and the adjacent valley side.

Marine terraces

A marine terrace represents the former shoreline of a sea or ocean. It can be formed by marine abrasion or erosion of materials comprising the shoreline (marine-cut terraces or wave-cut platforms); the accumulations of sediments in the shallow-water to slightly emerged coastal environments (marine-built terraces or raised beach); or the bioconstruction by coral reefs and accumulation of reef materials (reef flats) in intertropical regions. [4]

The formation of a marine terrace follows this general process: A wave cut platform must be carved into bedrock (high wave energy is needed for this process). Although this is the first step to the process for the formation of a marine terrace, not all wave cut platforms will become a marine terrace. After the wave cut platform is formed it must be removed from interaction with the high wave energy. This process happens by either change in sea level due to glacial-interglacial cycles or tectonically rising landmasses. When the wave cut has been raised above sea level it is preserved. The terraces are most commonly preserved in flights along the coastline. [5]

Lacustrine terraces

A lake (lacustrine) terrace represents the former shoreline of either a nonglacial, glacial, or proglacial lake. As with marine terraces, a lake terrace can be formed by either the abrasion or erosion of materials comprising the shoreline, the accumulations of sediments in the shallow-water to slightly emerged environments, or some combination of these. Given the smaller size of lakes relative to the size of typical marine water bodies, lake terraces are overall significantly narrower and less well developed than marine terraces. [6] [7] However, not all lake terraces are relict shorelines. In case of the lake terraces of ancient ice-walled lakes, some proglacial lakes, and alluvium-dammed (slackwater) lakes, they often represent the relict bottom of these lakes. [8] [9] [10] Finally, glaciolacustrine kame terraces are either the relict deltas or bottoms of ancient ice marginal lakes. [11]

Structural terraces

In geomorphology, a structural terrace is a terrace created by the differential erosion of flat-lying or nearly flat-lying layered strata. The terrace results from preferential stripping by erosion of a layer of softer strata from an underlying layer of harder strata. The preferential removal of softer material exposes the flat surface of the underlying harder layer, creating the tread of a structural terrace. Structural terraces are commonly paired and not always associated with river valleys. [1]

Travertine terraces

A travertine terrace is formed when geothermally heated supersaturated alkaline waters emerge to the surface and form waterfalls of precipitated carbonates.

See also

Related Research Articles

<span class="mw-page-title-main">Erosion</span> Natural processes that remove soil and rock

Erosion is the action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited. Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.

<span class="mw-page-title-main">Geomorphology</span> Scientific study of landforms

Geomorphology is the scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.

<span class="mw-page-title-main">Fluvial processes</span> Processes associated with rivers and streams

In geography and geology, fluvial processes are associated with rivers and streams and the deposits and landforms created by them. When the stream or rivers are associated with glaciers, ice sheets, or ice caps, the term glaciofluvial or fluvioglacial is used.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

<span class="mw-page-title-main">Wave-cut platform</span> Narrow flat area created by erosion

A wave-cut platform, shore platform, coastal bench, or wave-cut cliff is the narrow flat area often found at the base of a sea cliff or along the shoreline of a lake, bay, or sea that was created by erosion. Wave-cut platforms are often most obvious at low tide when they become visible as huge areas of flat rock. Sometimes the landward side of the platform is covered by sand, forming the beach, and then the platform can only be identified at low tides or when storms move the sand.

<span class="mw-page-title-main">Raised beach</span> Emergent coastal landform

A raised beach, coastal terrace, or perched coastline is a relatively flat, horizontal or gently inclined surface of marine origin, mostly an old abrasion platform which has been lifted out of the sphere of wave activity. Thus, it lies above or under the current sea level, depending on the time of its formation. It is bounded by a steeper ascending slope on the landward side and a steeper descending slope on the seaward side. Due to its generally flat shape, it is often used for anthropogenic structures such as settlements and infrastructure.

<span class="mw-page-title-main">Kame</span> Mound formed on a retreating glacier and deposited on land

A kame, or knob, is a glacial landform, an irregularly shaped hill or mound composed of sand, gravel and till that accumulates in a depression on a retreating glacier, and is then deposited on the land surface with further melting of the glacier. Kames are often associated with kettles, and this is referred to as kame and kettle or knob and kettle topography. The word kame is a variant of comb, which has the meaning "crest" among others. The geological term was introduced by Thomas Jamieson in 1874.

<span class="mw-page-title-main">Ridge</span> Long, narrow, elevated landform

A ridge is a long, narrow, elevated geomorphologic landform, structural feature, or combination of both separated from the surrounding terrain by steep sides. The sides of a ridge slope away from a narrow top, the crest or ridgecrest, with the terrain dropping down on either side. The crest, if narrow, is also called a ridgeline. Limitations on the dimensions of a ridge are lacking. Its height above the surrounding terrain can vary from less than a meter to hundreds of meters. A ridge can be either depositional, erosional, tectonic, or combination of these in origin and can consist of either bedrock, loose sediment, lava, or ice depending on its origin. A ridge can occur as either an isolated, independent feature or part of a larger geomorphological and/or structural feature. Frequently, a ridge can be further subdivided into smaller geomorphic or structural elements.

Fluvial terraces are elongated terraces that flank the sides of floodplains and fluvial valleys all over the world. They consist of a relatively level strip of land, called a "tread", separated from either an adjacent floodplain, other fluvial terraces, or uplands by distinctly steeper strips of land called "risers". These terraces lie parallel to and above the river channel and its floodplain. Because of the manner in which they form, fluvial terraces are underlain by fluvial sediments of highly variable thickness. River terraces are the remnants of earlier floodplains that existed at a time when either a stream or river was flowing at a higher elevation before its channel downcut to create a new floodplain at a lower elevation. Changes in elevation can be due to changes in the base level of the fluvial system, which leads to headward erosion along the length of either a stream or river, gradually lowering its elevation. For example, downcutting by a river can lead to increased velocity of a tributary, causing that tributary to erode toward its headwaters. Terraces can also be left behind when the volume of the fluvial flow declines due to changes in climate, typical of areas which were covered by ice during periods of glaciation, and their adjacent drainage basins.

<span class="mw-page-title-main">River rejuvenation</span> Erosion process in geomorphology

In geomorphology a river is said to be rejuvenated when it is eroding the landscape in response to a lowering of its base level. The process is often a result of a sudden fall in sea level or the rise of land. The disturbance enables a rise in the river's potential energy, increasing its riverbed erosion rate. The erosion occurs as a result of the river adjusting to its new base level.

Fluvio refers to things related to rivers and glacial refers to something that is of ice. Fluvio-glacial refers to the meltwater created when a glacier melts. Fluvio-glacial processes can occur on the surface and within the glacier. The deposits that happen within the glacier are revealed after the entire glacier melts or partially retreats. Fluvio-glacial landforms and erosional surfaces include: outwash plains, kames, kame terraces, kettle holes, eskers, varves, and proglacial lakes.

<span class="mw-page-title-main">Meander</span> One of a series of curves in a channel of a matured stream

A meander is one of a series of regular sinuous curves in the channel of a river or other watercourse. It is produced as a watercourse erodes the sediments of an outer, concave bank and deposits sediments on an inner, convex bank which is typically a point bar. The result of this coupled erosion and sedimentation is the formation of a sinuous course as the channel migrates back and forth across the axis of a floodplain.

<span class="mw-page-title-main">Knickpoint</span> Point on a streams profile where a sudden change in stream gradient occurs

In geomorphology, a knickpoint or nickpoint is part of a river or channel where there is a sharp change in channel slope, such as a waterfall or lake. Knickpoints reflect different conditions and processes on the river, often caused by previous erosion due to glaciation or variance in lithology. In the cycle of erosion model, knickpoints advance one cycle upstream, or inland, replacing an older cycle. A knickpoint that occurs at the head of a channel is called a headcut. Headcuts resulting in headward erosion are hallmarks of unstable expanding drainage features such as actively eroding gullies.

<span class="mw-page-title-main">Downcutting</span> Process of deepening a stream channel by erosion of the bottom material

Downcutting, also called erosional downcutting, downward erosion or vertical erosion is a geological process by hydraulic action that deepens the channel of a stream or valley by removing material from the stream's bed or the valley's floor. The speed of downcutting depends on the stream's base level, the lowest point to which the stream can erode. Sea level is the ultimate base level, but many streams have a higher "temporary" base level because they empty into another body of water that is above sea level or encounter bedrock that resists erosion. A concurrent process called lateral erosion refers to the widening of a stream channel or valley. When a stream is high above its base level, downcutting will take place faster than lateral erosion; but as the level of the stream approaches its base level, the rate of lateral erosion increases. This is why streams in mountainous areas tend to be narrow and swift, forming V-shaped valleys, while streams in lowland areas tend to be wide and slow-moving, with valleys that are correspondingly wide and flat-bottomed. The term gradient refers to the elevation of a stream relative to its base level. The steeper the gradient, the faster the stream flows. Sometimes geological uplift will increase the gradient of a stream even while the stream downcuts toward its base level, a process called "rejuvenation." This happened in the case of the Colorado River in the western United States, resulting in the process that created the Grand Canyon.

<span class="mw-page-title-main">Abrasion (geology)</span>

Abrasion is a process of erosion which occurs when material being transported wears away at a surface over time. It is the process of friction caused by scuffing, scratching, wearing down, marring, and rubbing away of materials. The intensity of abrasion depends on the hardness, concentration, velocity and mass of the moving particles. Abrasion generally occurs in four ways: glaciation slowly grinds rocks picked up by ice against rock surfaces; solid objects transported in river channels make abrasive surface contact with the bed and walls; objects transported in waves breaking on coastlines; and by wind transporting sand or small stones against surface rocks.

Fluvioglacial landforms are those that result from the associated erosion and deposition of sediments caused by glacial meltwater. These landforms may also be referred to as glaciofluvial in nature. Glaciers contain suspended sediment loads, much of which is initially picked up from the underlying landmass. Landforms are shaped by glacial erosion through processes such as glacial quarrying, abrasion, and meltwater. Glacial meltwater contributes to the erosion of bedrock through both mechanical and chemical processes.

<span class="mw-page-title-main">Bench (geology)</span> Long, relatively narrow land bounded by distinctly steeper slopes above and below

In geomorphology, geography and geology, a bench or benchland is a long, relatively narrow strip of relatively level or gently inclined land that is bounded by distinctly steeper slopes above and below it. Benches can be of different origins and created by very different geomorphic processes.

In geology, degradation refers to the lowering of a fluvial surface, such as a stream bed or floodplain, through erosional processes. Degradation is the opposite of aggradation. Degradation is characteristic of channel networks in which either bedrock erosion is taking place, or in systems that are sediment-starved and are therefore entraining more material than they are depositing. When a stream degrades, it leaves behind a fluvial terrace. This can be further classified as a strath terrace—a bedrock terrace that may have a thin mantle of alluvium—if the river is incising through bedrock. These terraces may be dated with methods such as cosmogenic radionuclide dating, OSL dating, and paleomagnetic dating to find when a river was at a particular level and how quickly it is downcutting.

<span class="mw-page-title-main">River terraces (tectonic–climatic interaction)</span>

Terraces can be formed in many ways and in several geologic and environmental settings. By studying the size, shape, and age of terraces, one can determine the geologic processes that formed them. When terraces have the same age and/or shape over a region, it is often indicative that a large-scale geologic or environmental mechanism is responsible. Tectonic uplift and climate change are viewed as dominant mechanisms that can shape the earth’s surface through erosion. River terraces can be influenced by one or both of these forcing mechanisms and therefore can be used to study variation in tectonics, climate, and erosion, and how these processes interact.

<span class="mw-page-title-main">Glaciofluvial deposits</span> Sediments/deposits formed from ice sheets or glaciers

Glaciofluvial deposits or Glacio-fluvial sediments consist of boulders, gravel, sand, silt and clay from ice sheets or glaciers. They are transported, sorted and deposited by streams of water. The deposits are formed beside, below or downstream from the ice. They include kames, kame terraces and eskers formed in ice contact and outwash fans and outwash plains below the ice margin. Typically the outwash sediment is carried by fast and turbulent fluvio-glacial meltwater streams, but occasionally it is carried by catastrophic outburst floods. Larger elements such as boulders and gravel are deposited nearer to the ice margin, while finer elements are carried farther, sometimes into lakes or the ocean. The sediments are sorted by fluvial processes. They differ from glacial till, which is moved and deposited by the ice of the glacier, and is unsorted.

References

  1. 1 2 3 Howard, A.D., R.W. Fairbridge, J.H. Quinn, 1968, "Terraces, Fluvial—Introduction", in R.W. Fairbridge, ed., The Encyclopedia of Geomorphology: Encyclopedia of Earth Science Series, vol. 3. Reinhold Book Corporation. New York, New York.
  2. Jackson, J.A., 1997, Glossary of Geology. American Geological Institute. Alexandria, Virginia.
  3. Blum, M., and T.E. Tonqvist, 2000, "Fluvial responses to climate and sea-level change, a review and look forward." Sedimentology. v. 47 suppl. 1, pp. 2-48.
  4. Pirazzoli, P. A., 2005, "Marine Terraces". in M. L. Scheartz, ed., pp. 632-633. Encyclopedia of Coastal Science. Springer, New York, New York.
  5. Clark, Alisha, Marine Terraces, University of California, Santa Cruz Island Geology and Geomorphology, accessed October 2013 Archived 2013-10-11 at archive.today
  6. Bowman, D., 1971. "Geomorphology of the shore terraces of the late Pleistocene Lisan Lake (Israel)". Palaeoclimatology, Palaeoecology Palaeoclimatology. v. 9, no. 3, p. 183-209.
  7. Prieto, F.J.G., 1995, "Shoreline forms and deposits in Gallocanta Lake (NE Spain)". Geomorphology. v. 11, no. 4, p. 323-335.
  8. Shaw. E.D., 1915, "Newly discovered beds of extinct lakes in southern and western Illinois and adjacent states". Bulletin no. 20, Illinois State Geological Survey, Champaign, Illinois, p. 139-157.
  9. Clayton, L., J.W. Attig, N.R. Ham, M.D. Johnson, C.E. Jennings, and K.M. Syverson, 2008, "Ice-walled-lake plains: Implications for the origin of hummocky glacial topography in middle North America". Geomorphology. v. 97, no. 1-2, p. 237–248.
  10. Grimley, D.A., D. Larsen, S.W. Kaplan, C.H. Yansa, B.B. Curry, and E.A. Oches, 2009, "A multi-proxy palaeoecological and palaeoclimatic record within full glacial lacustrine deposits, western Tennessee, USA". Journal of Quaternary Science. v. 24, no. 8, p. 960 - 981.
  11. Bitinas, A. D. Karmaziene, and A. Jusiene, 2004, "Glaciolacustrine kame terraces as an indicator of conditions of deglaciation in Lithuania during the Last Glaciation". Sedimentary Geology. v. 165, no. 3-4, p. 285–294.