Ontario Lacus

Last updated
Ontario Lacus
Cassini-OntarioLacus-RADAR.jpg
RADAR-image of Ontario Lacus taken by Cassini on January 12, 2010.
Feature typeLacus
Coordinates 72°S183°W / 72°S 183°W / -72; -183
Diameter235 km [note 1]
Surface area20,000 km²
Eponym Lake Ontario
Infrared image of Titan's south polar region. Ontario Lacus is the dark feature at centre-left. Lacus Ontario.jpg
Infrared image of Titan's south polar region. Ontario Lacus is the dark feature at centre-left.
Radar image of Titan's south polar region, showing Ontario Lacus and surroundings. In the annotated version, the putative shoreline of a proposed former south polar sea of Titan is outlined. PIA16166 Ontario Lacus.jpg
Radar image of Titan's south polar region, showing Ontario Lacus and surroundings. In the annotated version, the putative shoreline of a proposed former south polar sea of Titan is outlined.

Ontario Lacus is a lake composed of methane, ethane and propane near the south pole of Saturn's moon Titan. Its character as a hydrocarbon lake was confirmed [1] by observations from the Cassini spacecraft, published in the 31 July 2008 edition of Nature . Ontario Lacus has a surface area of about 15,000 square kilometers (5,800 sq mi), about 20% smaller than its terrestrial namesake, Lake Ontario in North America. In April 2012, it was announced that it may be more like a mudflat or salt pan. [2]

Contents

Shorelines

On January 12, 2010, Cassini took a more detailed radar-image of Ontario Lacus showing numerous remarkable features. The northern shoreline features low hills, probably about 1 kilometer (3,000 feet) high, and flooded river valleys. A smooth wave-sculpted shoreline, like on the southeast side of Lake Michigan, can be seen at the northeast part of the lake. Smooth lines parallel to the current shoreline could be formed by low waves over time, which were likely driven by winds sweeping in from the west or southwest. The southeast shore features a round-headed bay intruding into the shore.

The middle part of the western shoreline shows the first well-developed river delta observed on Titan, showing that liquid hydrocarbons flowing down from a higher plain have switched channels on their way into the lake, forming at least two lobes. Examples of this kind of channel switching and wave-modified deltas can be found on Earth at the south end of Lake Albert between Uganda and the Democratic Republic of Congo in Africa and in the remains of an ancient lake known as Megachad in the African country Chad. [3]

Shore recession

Infrared observations show that the southwest shoreline of the lake receded 9–11 km over four years (2005-2009), evidently due to evaporation during the dry southern hemisphere autumn. [4] Over the same interval, no change was observed in the south or southeast shorelines, indicating steeper slopes there. The sizes of northern hemisphere lakes and maria, in contrast, have been much more stable. [4]

Depth

By terrestrial standards, the lake appears to be extremely shallow. Radar measurements made in July 2009 and January 2010 indicate an average depth of 0.4 – 3.2 m, and a maximum depth of 2.9 – 7.4 m. [5] This gives the lake an estimated volume of 7 to 50 km3, less than one thirtieth the volume of Earth's Lake Ontario. The notoriously shallow Lake Okeechobee in Florida has a similar depth.

Geomorphology and hydrology

The left and right images show the large catchment areas of Lake Eyre (dark grey region) and Ontario Lacus (red outline) respectively. In both cases, the lake area (blue, dashed ovals) is much smaller than the catchment area. Lake Eyre comparison to Ontario Lacus.png
The left and right images show the large catchment areas of Lake Eyre (dark grey region) and Ontario Lacus (red outline) respectively. In both cases, the lake area (blue, dashed ovals) is much smaller than the catchment area.

Ontario Lacus may resemble a semi-arid shallow depression lying in an alluvial fan where the water table height (of liquid hydrocarbons) rises above the elevation of the depression floor, analogous to the Etosha Pan in Namibia. [6] Hydrological runoff models have found evidence for an extensive basin catchment area for the lake, suggesting seasonal rainfall may be responsible for filling liquids in the local depression. This situation may be analogous to the ephemeral filling of Lake Eyre in Australia due to its notably large catchment area and the semi-arid climate of central Australia. [7]

Waves

Any waves on the lake are also far smaller than those that would be on a sizable body of liquid water on Earth; their estimated maximum height was less than 3 mm during observations of a radar specular reflection during Cassini's T49 flyover of July 2009. [8] On Titan, waves can be generated at lower wind speeds than on Earth, due to the four times greater atmospheric density, and should be seven times higher at a given wind speed, due to Titan's surface gravity being one seventh as strong. On the other hand, pure liquid methane is only half as dense as water and may not be dense enough to form a wave in the first place, comparable of building a sand castle with bone dry sand. [8] Alternatively, the lack of waves could indicate either wind speeds less than 0.5 m/s, or an unexpectedly viscous composition of the hydrocarbon-mix fluid. [5] [8] In any case, the apparent presence of a wave-generated beach on the lake's northeast shore suggests that at times considerably higher waves form. [8]

Notes

  1. The USGS web site gives the size as a "diameter", but it is actually the length in the longest dimension.

Related Research Articles

<span class="mw-page-title-main">Saturn</span> Sixth planet from the Sun

Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth, but is over 95 times more massive.

<span class="mw-page-title-main">Titan (moon)</span> Largest moon of Saturn

Titan is the largest moon of Saturn, the second-largest in the Solar System and larger than any of the dwarf planets of the Solar System. It is the only moon known to have a dense atmosphere, and is the only known object in space other than Earth on which clear evidence of stable bodies of surface liquid has been found.

<span class="mw-page-title-main">Xanadu (Titan)</span>

Xanadu is a highly reflective area on the leading hemisphere of Saturn's moon Titan. Its name comes from an alternate transcription of Shangdu, the summer capital of the Yuan dynasty established by Kublai Khan and made famous by Samuel Taylor Coleridge.

<span class="mw-page-title-main">Cryovolcano</span> Type of volcano that erupts volatiles such as water, ammonia or methane, instead of molten rock

A cryovolcano is a type of volcano that erupts volatiles such as water, ammonia or methane into an extremely cold environment that is at or below their freezing point. The process of formation is known as cryovolcanism. Collectively referred to as cryomagma, cryolava or ice-volcanic melt, these substances are usually liquids and can form plumes, but can also be in vapour form. After the eruption, cryomagma is expected to condense to a solid form when exposed to the very low surrounding temperature. Cryovolcanoes may potentially form on icy moons and other objects with abundant water past the Solar System's snow line. A number of features have been identified as possible cryovolcanoes on Pluto, Titan and Ceres, and a subset of domes on Europa may have cryovolcanic origins. In addition, although they are not known to form volcanoes, ice geysers have been observed on Enceladus and potentially Triton.

<span class="mw-page-title-main">Colonization of Titan</span> Proposed concepts for the human colonization of Titan

Saturn's largest moon Titan is one of several candidates for possible future colonization of the outer Solar System, though protection against extreme cold is a major consideration.

<span class="mw-page-title-main">Life on Titan</span> Scientific assessments on the microbial habitability of Titan

Whether there is life on Titan, the largest moon of Saturn, is currently an open question and a topic of scientific assessment and research. Titan is far colder than Earth, but of all the places in the Solar System, Titan is the only place besides Earth known to have liquids in the form of rivers, lakes, and seas on its surface. Its thick atmosphere is chemically active and rich in carbon compounds. On the surface there are small and large bodies of both liquid methane and ethane, and it is likely that there is a layer of liquid water under its ice shell. Some scientists speculate that these liquid mixes may provide prebiotic chemistry for living cells different from those on Earth.

<span class="mw-page-title-main">Atmosphere of Titan</span> Only thick atmosphere of any moon in the Solar System

The atmosphere of Titan is the dense layer of gases surrounding Titan, the largest moon of Saturn. It is the only thick atmosphere of a natural satellite in the Solar System. Titan's lower atmosphere is primarily composed of nitrogen (94.2%), methane (5.65%), and hydrogen (0.099%). There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, propane, PAHs and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, acetonitrile, argon and helium. The isotopic study of nitrogen isotopes ratio also suggests acetonitrile may be present in quantities exceeding hydrogen cyanide and cyanoacetylene. The surface pressure is about 50% higher than on Earth at 1.5 bars which is near the triple point of methane and allows there to be gaseous methane in the atmosphere and liquid methane on the surface. The orange color as seen from space is produced by other more complex chemicals in small quantities, possibly tholins, tar-like organic precipitates.

<span class="mw-page-title-main">Lakes of Titan</span> Hydrocarbon lakes on Titan, a moon of Saturn

Lakes of ethane and methane on Titan, Saturn's largest moon, have been detected by the Cassini–Huygens space probe, and had been suspected long before. The large ones are known as maria (seas) and the small ones as lacūs (lakes).

<span class="mw-page-title-main">Climate of Titan</span> Climate of Titan, the largest moon of Saturn

The climate of Titan, the largest moon of Saturn, is similar in many respects to that of Earth, despite having a far lower surface temperature. Its thick atmosphere, methane rain, and possible cryovolcanism create an analogue, though with different materials, to the climatic changes undergone by Earth during its far shorter year.

<span class="mw-page-title-main">Kraken Mare</span> Largest hydrocarbon lake on Titan

Kraken Mare is the largest known body of liquid on the surface of Saturn's moon Titan. It was discovered by the space probe Cassini in 2006, and was named in 2008 after the Kraken, a legendary sea monster. It covers an area slightly bigger than the Caspian Sea on Earth, making it the largest known lake in the Solar System.

<span class="mw-page-title-main">Ligeia Mare</span> Sea on Titan

Ligeia Mare is a lake in the north polar region of Titan, the planet Saturn's largest moon. It is the second largest body of liquid on the surface of Titan, after Kraken Mare. Larger than Lake Superior on Earth, it is mostly composed of liquid methane, with unknown but lesser components of dissolved nitrogen and ethane, as well as other organic compounds. It is located at 78° N, 249° W, and has been fully imaged by the Cassini spacecraft. Measuring roughly 420 km (260 mi) by 350 km (217 mi) across, it has a surface area of about 126,000 km2, and a shoreline over 2,000 km (1,240 mi) in length. The lake may be hydrologically connected to the larger Kraken Mare. Its namesake is Ligeia, one of the sirens in Greek mythology.

<span class="mw-page-title-main">Titan Mare Explorer</span> Proposed spacecraft lander design

Titan Mare Explorer (TiME) is a proposed design for a lander for Saturn's moon Titan. TiME is a relatively low-cost, outer-planet mission designed to measure the organic constituents on Titan and would have performed the first nautical exploration of an extraterrestrial sea, analyze its nature and, possibly, observe its shoreline. As a Discovery-class mission it was designed to be cost-capped at US$425 million, not counting launch vehicle funding. It was proposed to NASA in 2009 by Proxemy Research as a scout-like pioneering mission, originally as part of NASA's Discovery Program. The TiME mission design reached the finalist stage during that Discovery mission selection, but was not selected, and despite attempts in the U.S. Senate failed to get earmark funding in 2013. A related Titan Submarine has also been proposed.

<span class="mw-page-title-main">Jingpo Lacus</span> Lake on Titan

Jingpo Lacus is a lake in the north polar region of Titan, the planet Saturn's largest moon. It and similarly sized Ontario Lacus are the largest known bodies of liquid on Titan after the three maria. It is composed of liquid hydrocarbons. It is west of Kraken Mare at 73° N, 336° W, roughly 240 km long, similar to the length of Lake Onega on Earth. Its namesake is Jingpo Lake, a lake in China.

<span class="mw-page-title-main">Bolsena Lacus</span> Lake on Titan

Bolsena Lacus is one of a number of hydrocarbon lakes found on Saturn's largest moon, Titan.

<span class="mw-page-title-main">Sotonera Lacus</span> Lake on Titan

Sotonera Lacus is one of a number of hydrocarbon lakes found on Saturn's largest moon, Titan.

<span class="mw-page-title-main">Hammar Lacus</span> Lake on Titan

Hammar Lacus is one of a number of hydrocarbon seas and lakes found on Saturn's largest moon, Titan.

Planetary oceanography also called astro-oceanography or exo-oceanography is the study of oceans on planets and moons other than Earth. Unlike other planetary sciences like astrobiology, astrochemistry and planetary geology, it only began after the discovery of underground oceans in Saturn's moon Titan and Jupiter's moon Europa. This field remains speculative until further missions reach the oceans beneath the rock or ice layer of the moons. There are many theories about oceans or even ocean worlds of celestial bodies in the Solar System, from oceans made of diamond in Neptune to a gigantic ocean of liquid hydrogen that may exist underneath Jupiter's surface.

Vid Flumina is a river of liquid methane and ethane on Saturn's moon Titan. The river has been compared to the Nile. It is more than 400 km (249 mi) long and flows into Titan's second largest hydrocarbon sea, Ligeia Mare. The surface of Titan is mostly water ice, so Vid Flumina is a river of methane and ethane flowing across and cutting canyons into ice as though it were bedrock. NASA scientists think that it likely has rapids, whirlpools and waterfalls, just like rivers on Earth.

<span class="mw-page-title-main">Albano Lacus</span> Lake on Titan

Albano Lacus is one of a number of hydrocarbon lakes found on Saturn's largest moon, Titan.

References

  1. "NASA Confirms Liquid Lake On Saturn Moon". NASA. 2007-07-30. Retrieved 2007-07-30.
  2. "Cassini Finds Titan Lake is Like a Namibia Mudflat - NASA". Archived from the original on 2012-05-06. Retrieved 2012-04-21.
  3. "Catalog Page for PIA13172". photojournal.jpl.nasa.gov. Retrieved 2019-05-30.
  4. 1 2 Turtle, E. P.; Perry, J. E.; Hayes, A. G.; McEwen, A. S. (2011-02-15). "Shoreline retreat at Titan's Ontario Lacus and Arrakis Planitia from Cassini Imaging Science Subsystem observations". Icarus . 212 (2): 957–959. Bibcode:2011Icar..212..957T. doi:10.1016/j.icarus.2011.02.005.
  5. 1 2 Wall, Mike (2010-12-17). "Saturn Moon's 'Lake Ontario': Shallow and Virtually Wave-free". Space.com. Retrieved 2010-12-19.
  6. Cornet, T.; Bourgeois, O.; Le Mouélic, S.; Rodriguez, S.; Lopez Gonzalez, T.; Sotin, C.; Tobie, G.; Fleurant, C.; Barnes, J. W.; Brown, R. H.; Baines, K. H. (2012-04-01). "Geomorphological significance of Ontario Lacus on Titan: Integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia)" (PDF). Icarus. 218 (2): 788–806. Bibcode:2012Icar..218..788C. doi:10.1016/j.icarus.2012.01.013. ISSN   0019-1035.
  7. Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L. (2018-01-01). "Large catchment area recharges Titan's Ontario Lacus". Icarus. 299: 331–338. Bibcode:2018Icar..299..331D. doi:10.1016/j.icarus.2017.08.009. ISSN   0019-1035.
  8. 1 2 3 4 Wye, Lauren; Zebker, Howard (2009-12-02). "Titan's Ontario Lacus: Smoothness Constraints from Cassini RADAR (video)" (slide set). SETI Institute Colloquium Series. CosmoLearning. Retrieved 2010-12-21.{{cite web}}: External link in |format= (help)