Ophioblennius atlanticus

Last updated

Ophioblennius atlanticus
Ophioblennius atlanticus.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Blenniiformes
Family: Blenniidae
Genus: Ophioblennius
Species:
O. atlanticus
Binomial name
Ophioblennius atlanticus
(Valenciennes, 1836) [2]
Synonyms
  • Salarias atlanticusValenciennes, 1836
  • Blennius atlanticus(Valenciennes, 1836)
  • Cynoscartes atlanticus(Valenciennes, 1836)
  • Rupiscartes atlanticus(Valenciennes, 1836)
  • Scartichthys atlanticus(Valenciennes, 1836)
  • Blennophis webbiiValenciennes, 1843
  • Ophioblennius webbii(Valenciennes, 1843)
Ophioblennius atlanticus 2017, cuba, jardines aggressor, patricia, red lipped blennie (36883094923).jpg
Ophioblennius atlanticus

Ophioblennius atlanticus, also known as the redlip blenny and the horseface blenny, is a species of combtooth blenny, family Blenniidae, found primarily in the western central Atlantic ocean. Redlip blennies can be found in coral crests and shallow fringing reefs. They are highly territorial and attack intruders with two long, sharp canine teeth. The adults are found at depths of 10 to 20 meters, and the eggs are benthic. [3] The adults may reach up to four inches in length when fully grown, and they have large reddish lips, from which they attained their names. Redlip blennies largely feed on algae.

Contents

Taxonomy

The species was originally described by French zoologist Achille Valenciennes in 1836. [4] Ophis is Greek for "serpent", and blennios is Greek for "mucus". The species name atlanticus is the name for its location of capture. The common name, redlip, refers to the reddish color of its lips.

Description

Adult redlip blennies can reach two to four inches in length. They are chocolate brown in appearance with some yellow markings, and possess blunt heads featuring four branching horns, and large reddish lips. A variation on the species is a paler form, having a shell-white body and reddish brown head.

Distribution and habitat

Ophioblennius atlanticus is native to the tropical marine environments of the central Atlantic Ocean. Its range extends to the eastern Atlantic from Senegal to Angola, including offshore islands, in the northeastern Atlantic it is confined to the Macaronesian archipelagos of the Canary Islands, Madeira and the Azores. [1] In the western Atlantic it is found off Bermuda and off the shores of North Carolina south through the West Indies to Brazil. [5] It has been reporded twice in the central Mediterranean Sea. [6] Ophioblennius atlanticus mostly inhabits shallow, clear waters with coral reefs and rock bottoms. [5] Ophioblennius atlanticus adults are mostly found at depths of 10 to 20 meters, while their eggs are benthic.

Aquaculture

These fish occasionally make their way into the pet trade. They require a minimum of 30 gallons, and being generally peaceful are suitable for community tanks, as long as no other fish have a similar body shape. However they do well in mated pairs. They should be kept at temperatures of 22–26 °C (72–78 °F), with a PH level of 8.1–8.4. They have a jumping ability which allows them to jump from tide pool to tide pool in the wild. This means that if they are to be housed in an aquarium a lid is necessary. The horseface blenny feeds primarily on algae, but also consumes zooplankton and other invertebrates. They possess two razor-sharp canine teeth, which has earned them the nickname of "devil fish" in some countries. [7]

Behavior

Reproduction

Redlip blennies reproduce year-round in the ten days before and four days after the full moon in each month. The male and female pair up in the first three hours of daylight, and the female moves to the male territory. [8] The male has to prepare a nest for depositing eggs. In order to prepare a nest, the male makes a "small box-like" space in its territory and removes coral rubble and dead algae crusts from the space. [9] One male redlip blenny usually has five nests, and the amount of time he spends at each nest is determined by how much the nest is favored by females. [8] Usually the most favored nest has a larger inner surface area and volume than the less favored ones. When a female redlip blenny enters a male's nest, the female chooses whether or not to mate with the male. Larger males with larger nests have better chance of successful mating than smaller males with smaller nests. During spawning seasons, males reduce their feeding. The eggs are deposited in a single layer, and the male guards and cares for the eggs by blowing air onto them until they hatch as planktonic larvae. [10] The egg batches in one nest may be at different developmental stages because the male redlip blenny is polygynous, mating with multiple females. In other words, the eggs have different mothers. Female redlip blennies tend to be polyandrous as well, meaning that there are multiple nests with one female's eggs. [10]

The female mate choice primarily relies on a male's genetic quality or its non-genetic quality. A male is recognized to have good genes, if it has physical features that are suitable for survival. Usually, big body size indicates good genetic quality. Mating with a male of good genetic quality assures that the offspring will also have good genes and thus the physical features favorable for survival. This eventually will propagate the female's own genes. [11] The non-genetic quality includes many examples, such as good parental care. Good parental care does not guarantee good genes for the offspring. However, good parental care can increase the survival rate of the offspring, thereby spreading the female's genes. [12]

Female redlip blennies consider both the genetic and non-genetic quality of the male. First of all, they choose males largely based on their sizes (genetic quality). Larger males can better protect the female and the eggs against predators. Furthermore, larger male redlip blennies have larger antimicrobial organs at their anal-urogenital regions, which they use to prevent microbial infection in the eggs. [13] Female redlip blennies also consider males' allopaternal care when choosing mates (non-genetic quality). Allopaternal care proves to the female that the male is capable of protecting the eggs from predators. [14] Finally, a statistical study showed that female redlip blennies may prefer older males because the age of the male could reflect his survival ability and thus guarantee the offspring better fitness (chance of survival). [15]

Parental care

Most parental care in fish is paternal care, where the male primarily gives care to the eggs, and redlip blennies are not exception. [16] A male redlip blenny exhibits typical paternal care behaviors, such as protecting the eggs from predators and blowing fresh air to the eggs. The male also performs a non-typical paternal care: rubbing its anal-urogenital region over the nest's internal surface during spawning. [13] The male redlip blenny has an organ at the anal-urogenital region that produces antimicrobial substances. This organ only exists in males due to sexual dimorphism. [17] Therefore, by rubbing the anal-urogenital region over the nest's internal surface, the male protects its eggs from microbial infections, one of the most common causes for mortality in young fish. Larger males have larger organs at their anal-urogenital regions and thus can provide better antimicrobial protection for the eggs than smaller males. Consequently, female redlip blennies choose their mates based on their size. [18]

Another atypical paternal care in redlip blennies is that the male indiscriminately cares for its own eggs and foreign eggs. When a male takes over the deserted nest, he will guard and care for the existing eggs in the nest, even though they are not his own eggs. This is called allopaternal care. [14] Allopaternal care seems to be a huge disadvantage from an evolutionary perspective, since the male expends its resources to benefit genetically unrelated offspring. However, exhibiting allopaternal care actually attracts more females because the existence of safe eggs in the nest proves the male's capacity to protect the eggs against predators. The allopaternal behavior also shows to female that the male is a trustworthy mate who will remain after mating and provide the eggs with a good amount of parental investment, thereby increasing the fitness of the offspring. [19]

Territoriality

Territorial behavior is usually performed to defend resources such as food, shelter, possible mates, spawning sites, and offspring. Redlip blennies live among rocks and coral reefs, and they are benthic. [20] A redlip blenny generally exhibits aggressive territorial behaviors towards other benthic fishes, as they may take over its shelter and spawning site. Its territorial behavior is most severe towards conspecifics. [21] This is because the conspecifics share exactly the same set of resources, leading to the most severe resource competition. A redlip blenny shows hostility of varying degrees not only to intruding conspecifics but also to barely intruding conspecifics. Due to this severe territoriality, the redlip blennies that have lost their territories experience a great difficulty in finding a new territory. Empty territories are often shared by neighboring fish without much competition. [22] Despite severe territoriality, during the periods of lower adult blenny density, many blennies gather up and fight against old residents to take over their territories. After such aggressive competition, each old resident usually ends up with only half of its previous territory. [21]

Larval swimming

Many fish have a swimbladder. By filling the swimbladder with gas, fish can float and swim in the water. However, redlip blennies never develop a swimbladder. The lack of a swimbladder does not affect adult redlip blennies, since they have already adjusted to the benthic life, as they matured. However, unlike the adults, redlip blenny larvae are not comfortable living at the sea bottom. Until they adjust to the bottom-dwelling life style, the larvae use a means of floating for survival: redlip blenny larvae have a huge storage of lipids in their liver, and this high lipid concentration provides buoyancy. [23] The larvae keeps its high lipid concentration until maturation. Later, as the larvae go through metamorphosis, it burns down all the stored lipids to support the high metabolism of metamorphosis. After losing its lipids through metamorphosis, the now-grown-up redlip blenny does not restore lipids, which provides a permanent high density body to the adult fish. [23]

Related Research Articles

<span class="mw-page-title-main">Triggerfish</span> Family of ray-finned fishes

Triggerfish are about 40 species of often brightly colored fish of the family Balistidae. Often marked by lines and spots, they inhabit tropical and subtropical oceans throughout the world, with the greatest species richness in the Indo-Pacific. Most are found in relatively shallow, coastal habitats, especially at coral reefs, but a few, such as the oceanic triggerfish, are pelagic. While several species from this family are popular in the marine aquarium trade, they are often notoriously ill-tempered.

<span class="mw-page-title-main">Behavioral ecology</span> Study of the evolutionary basis for animal behavior due to ecological pressures

Behavioral ecology, also spelled behavioural ecology, is the study of the evolutionary basis for animal behavior due to ecological pressures. Behavioral ecology emerged from ethology after Niko Tinbergen outlined four questions to address when studying animal behaviors: What are the proximate causes, ontogeny, survival value, and phylogeny of a behavior?

<span class="mw-page-title-main">Damselfish</span> Group of fishes

Damselfish are those within the subfamilies Abudefdufinae, Chrominae, Lepidozyginae, Pomacentrinae, and Stegastinae within the family Pomacentridae. Most species within this group are relatively small, with the largest species being about 30cm in length. Most damselfish species exist only in marine environments, but a few inhabit brackish or fresh water. These fish are found globally in tropical, subtropical, and temperate waters.

<span class="mw-page-title-main">Gobiidae</span> Family of fishes

Gobiidae or gobies is a family of bony fish in the order Gobiiformes, one of the largest fish families comprising more than 2,000 species in more than 200 genera. Most of gobiid fish are relatively small, typically less than 10 cm (3.9 in) in length, and the family includes some of the smallest vertebrates in the world, such as Trimmatom nanus and Pandaka pygmaea, Trimmatom nanus are under 1 cm long when fully grown, then Pandaka pygmaea standard length are 9 mm (0.35 in), maximum known standard length are 11 mm (0.43 in). Some large gobies can reach over 30 cm (0.98 ft) in length, but that is exceptional. Generally, they are benthic or bottom-dwellers. Although few are important as food fish for humans, they are of great significance as prey species for other commercially important fish such as cod, haddock, sea bass and flatfish. Several gobiids are also of interest as aquarium fish, such as the dartfish of the genus Ptereleotris. Phylogenetic relationships of gobiids have been studied using molecular data.

<span class="mw-page-title-main">Combtooth blenny</span> Family of fishes

Combtooth blennies are blenniiformids; percomorph marine fish of the family Blenniidae, part of the order Blenniiformes. They are the largest family of blennies with around 401 known species in 58 genera. Combtooth blennies are found in tropical and subtropical waters in the Atlantic, Pacific and Indian Oceans; some species are also found in brackish and even freshwater environments.

<span class="mw-page-title-main">Blue-footed booby</span> Species of bird

The blue-footed booby is a marine bird native to subtropical and tropical regions of the eastern Pacific Ocean. It is one of six species of the genus Sula – known as boobies. It is easily recognizable by its distinctive bright blue feet, which is a sexually selected trait and a product of their diet. Males display their feet in an elaborate mating ritual by lifting them up and down while strutting before the female. The female is slightly larger than the male and can measure up to 90 cm (35 in) long with a wingspan up to 1.5 m (5 ft).

Parent–offspring conflict (POC) is an expression coined in 1974 by Robert Trivers. It is used to describe the evolutionary conflict arising from differences in optimal parental investment (PI) in an offspring from the standpoint of the parent and the offspring. PI is any investment by the parent in an individual offspring that decreases the parent's ability to invest in other offspring, while the selected offspring's chance of surviving increases.

<span class="mw-page-title-main">Parental investment</span> Parental expenditure (e.g. time, energy, resources) that benefits offspring

Parental investment, in evolutionary biology and evolutionary psychology, is any parental expenditure that benefits offspring. Parental investment may be performed by both males and females, females alone or males alone. Care can be provided at any stage of the offspring's life, from pre-natal to post-natal.

<span class="mw-page-title-main">Convict cichlid</span> Species of fish

The convict cichlid is a fish species from the family Cichlidae, native to Central America, also known as the zebra cichlid. Convict cichlids are popular aquarium fish and have also been the subject of numerous studies on fish behaviour.

<span class="mw-page-title-main">Pair bond</span> Biological term

In biology, a pair bond is the strong affinity that develops in some species between a mating pair, often leading to the production and rearing of young and potentially a lifelong bond. Pair-bonding is a term coined in the 1940s that is frequently used in sociobiology and evolutionary biology circles. The term often implies either a lifelong socially monogamous relationship or a stage of mating interaction in socially monogamous species. It is sometimes used in reference to human relationships.

<span class="mw-page-title-main">Scissortail sergeant</span> Species of fish

The scissortail sergeant or striptailed damselfish is a large damselfish. It earns its name from the black-striped tail and sides, which are reminiscent of the insignia of a military Sergeant, being similar to those of the sergeant major damselfish. It grows to a length of about 16 centimetres (6.3 in).

<span class="mw-page-title-main">Parental care</span>

Parental care is a behavioural and evolutionary strategy adopted by some animals, involving a parental investment being made to the evolutionary fitness of offspring. Patterns of parental care are widespread and highly diverse across the animal kingdom. There is great variation in different animal groups in terms of how parents care for offspring, and the amount of resources invested by parents. For example, there may be considerable variation in the amount of care invested by each sex, where females may invest more in some species, males invest more in others, or investment may be shared equally. Numerous hypotheses have been proposed to describe this variation and patterns in parental care that exist between the sexes, as well as among species.

<span class="mw-page-title-main">Spawn (biology)</span> Process of aquatic animals releasing sperm and eggs into water

Spawn is the eggs and sperm released or deposited into water by aquatic animals. As a verb, to spawn refers to the process of freely releasing eggs and sperm into a body of water ; the physical act is known as spawning. The vast majority of non-mammalian, non-avian and non-reptilian aquatic and/or amphibious lifeforms reproduce through this process, including the:

<i>Ophioblennius macclurei</i> Species of fish

Ophioblennius macclurei, the redlip blenny, is a species of combtooth blenny found in coral reefs in the western Atlantic ocean. This species reaches a length of 12.2 centimetres (4.8 in) TL. The specific name honours the American comparative anatomist and embryologist Charles Freeman Williams McClure (1865-1955) in recognition of his work on the lymphatic systems of fishes.

Ophioblennius trinitatis is a species of combtooth blenny endemic to the southwest Atlantic ocean. It is a subtropical marine fish commonly found in reefs off the coast of Brazil. Combtooth blennies are often referred to as "peixes-macacos" in Brazil, which translates to "monkey-fish".

<i>Polistes metricus</i> Species of wasp

Polistes metricus is a wasp native to North America. In the United States, it ranges throughout the southern Midwest, the South, and as far northeast as New York, but has recently been spotted in southwest Ontario. A single female specimen has also been reported from Dryden, Maine. Polistes metricus is dark colored, with yellow tarsi and black tibia. Nests of Polistes metricus can be found attached to the sides of buildings, trees, and shrubbery.

Filial cannibalism occurs when an adult individual of a species consumes all or part of the young of its own species or immediate offspring. Filial cannibalism occurs in many species ranging from mammals to insects, and is especially prevalent in various species of fish. The exact evolutionary purpose of the practice in those species is unclear and debated among zoologists, though there is consensus that it may have, or may have had at some point in species' evolutionary history, certain evolutionary and ecological implications.

In biology, paternal care is parental investment provided by a male to his own offspring. It is a complex social behaviour in vertebrates associated with animal mating systems, life history traits, and ecology. Paternal care may be provided in concert with the mother or, more rarely, by the male alone.

<span class="mw-page-title-main">Polyandry in animals</span> Class of mating system in non-human species

In behavioral ecology, polyandry is a class of mating system where one female mates with several males in a breeding season. Polyandry is often compared to the polygyny system based on the cost and benefits incurred by members of each sex. Polygyny is where one male mates with several females in a breeding season . A common example of polyandrous mating can be found in the field cricket of the invertebrate order Orthoptera. Polyandrous behavior is also prominent in many other insect species, including the red flour beetle and the species of spider Stegodyphus lineatus. Polyandry also occurs in some primates such as marmosets, mammal groups, the marsupial genus' Antechinus and bandicoots, around 1% of all bird species, such as jacanas and dunnocks, insects such as honeybees, and fish such as pipefish.

<span class="mw-page-title-main">Parental care in birds</span>

Parental care refers to the level of investment provided by the mother and the father to ensure development and survival of their offspring. In most birds, parents invest profoundly in their offspring as a mutual effort, making a majority of them socially monogamous for the duration of the breeding season. This happens regardless of whether there is a paternal uncertainty.

References

  1. 1 2 Williams, J.T.; Craig, M.T. (2014). "Ophioblennius atlanticus". IUCN Red List of Threatened Species . 2014: e.T185129A1769289. doi: 10.2305/IUCN.UK.2014-3.RLTS.T185129A1769289.en . Retrieved 20 November 2021.
  2. Baily, N. (2012). Bailly N (ed.). "Ophioblennius atlanticus (Valenciennes, 1836)". FishBase . World Register of Marine Species . Retrieved 2012-12-03.
  3. Humann, P. (1989). Reef Fish Identification — Florida Caribbean Bahamas. Jacksonville, Florida: New World Publications, Inc., Paramount Miller Graphics, Inc.
  4. "Ophioblennius atlanticus". World Register of Marine Species.
  5. 1 2 Froese, Rainer; Pauly, Daniel (eds.) (2019). "Ophioblennius atlanticus" in FishBase . February 2019 version.
  6. Atlas of Exotic Fishes in the Mediterranean Sea (Ophioblennius atlanticus). 2nd Edition. 2021. 366p. CIESM Publishers, Paris, Monaco.https://ciesm.org/atlas/fishes_2nd_edition/Ophioblennius_atlanticus.pdf
  7. "Horseface Blenny: Saltwater Aquarium Fish for Marine Aquariums".
  8. 1 2 Cote, IM (1989). "Self-monitoring of reproductive success: nest switching in the redlip blenny". Behavioral Ecology and Sociobiology. 24: 403–408. doi:10.1007/bf00293268. S2CID   26173854.
  9. Cote, IM (1987). Mate choice and spawning periodicity in the redlip blenny (Pisces: Blenniidae) (MSc thesis). University of Alberta.
  10. 1 2 Marraro, CH; Nursall JR (1983). "The reproductive periodicity and behaviour of Ophioblennius atlanticus at Barbados". Journal of Zoology. 61: 317–325. doi:10.1139/z83-042.
  11. Dawkins, Richard (1976). The Selfish Gene. Oxford University Press.
  12. Hoelzer, GA (1989). "The good parent process of sexual selection". Animal Behaviour. 38 (6): 1067–1078. doi:10.1016/s0003-3472(89)80146-0. S2CID   53271370.
  13. 1 2 Giacomello, Eva; Daniela Marchini; Maria B Rasotto (2006). "A male sexually dimorphic trait provides antimicrobials to eggs in blenny fish". Biology Letters. 2 (3): 330–333. doi:10.1098/rsbl.2006.0492. PMC   1686180 . PMID   17148395.
  14. 1 2 Santos, R.S. (1995). "Allopaternal care in the redlip blenny". Journal of Fish Biology. 47 (2): 350–353. doi:10.1111/j.1095-8649.1995.tb01904.x.
  15. Cote, IM; Hunte, W. (1993). "Female redlip blennies prefer older males". Animal Behaviour. 46: 203–205. doi:10.1006/anbe.1993.1179. S2CID   53149597.
  16. Clutton-Brock, T.H. (1991). The evolution of parental care. Princeton University Press.
  17. Zander, C.D. (1975). "Secondary sex characteristics of blennioid fishes (Perciformes)". Pubblicazioni della Stazione Zoologica di Napoli. 39 (Supplement): 717–727.
  18. Giacomello, E.; Rasotto M.B. (2005). "Sexual dismorphism and male mating success in the tentacled blenny, Parablennius tentacularis (Teleostei: Blenniidae)". Marine Biology. 147 (5): 1221–1228. doi:10.1007/s00227-005-0023-4. S2CID   86593294.
  19. Ridley, M. (1978). "Paternal care". Animal Behaviour. 26: 904–932. doi:10.1016/0003-3472(78)90156-2. S2CID   53180470.
  20. Froese, Rainer; Pauly, Daniel (eds.) (2016). "Ophioblennius atlanticus" in FishBase. January 2016 version.
  21. 1 2 Hunte, W.; Cote IM (1988). "Recruitment in the redlip blenny Ophioblennius atlanticus: is space limiting?". Coral Reefs. 8: 45–50. doi:10.1007/bf00304691. S2CID   24046298.
  22. Nursall, J.R. (June 1977). "Territoriality in Redlip blennies (Ophioblennius atlanticus—Pisces: Blenniidae)". Journal of Zoology. 182 (2): 205–223. doi:10.1111/j.1469-7998.1977.tb04156.x.
  23. 1 2 Nursall, J.R. (1989). "Buoyancy is provided by lipids of larval redlip blennies, Ophioblennius atlanticus". Copeia. 1989 (3): 614–621. doi:10.2307/1445488. JSTOR   1445488.