Optical depth

Last updated
Aerosol Optical Depth (AOD) at 830 nm measured with the same LED sun photometer from 1990 to 2016 at Geronimo Creek Observatory, Texas. Measurements made at or near solar noon when the Sun is not obstructed by clouds. Peaks indicate smoke, dust and smog. Saharan dust events are measured each summer. Aerosol Optical Depth (haze) at Geronimo Creek Observatory, Texas (1990-2016).jpg
Aerosol Optical Depth (AOD) at 830 nm measured with the same LED sun photometer from 1990 to 2016 at Geronimo Creek Observatory, Texas. Measurements made at or near solar noon when the Sun is not obstructed by clouds. Peaks indicate smoke, dust and smog. Saharan dust events are measured each summer.

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. [1] Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged. [1]

Contents

In chemistry, a closely related quantity called "absorbance" or "decadic absorbance" is used instead of optical depth: the common logarithm of the ratio of incident to transmitted radiant power through a material. It is the optical depth divided by loge(10), because of the different logarithm bases used.

Mathematical definitions

Optical depth

Optical depth of a material, denoted , is given by: [2]

where

The absorbance is related to optical depth by:

Spectral optical depth

Spectral optical depth in frequency and spectral optical depth in wavelength of a material, denoted and respectively, are given by: [1]

where

Spectral absorbance is related to spectral optical depth by:

where

Relationship with attenuation

Attenuation

Optical depth measures the attenuation of the transmitted radiant power in a material. Attenuation can be caused by absorption, but also reflection, scattering, and other physical processes. Optical depth of a material is approximately equal to its attenuation when both the absorbance is much less than 1 and the emittance of that material (not to be confused with radiant exitance or emissivity) is much less than the optical depth:

where

and according to the Beer–Lambert law,

so:

Attenuation coefficient

Optical depth of a material is also related to its attenuation coefficient by:

where

and if α(z) is uniform along the path, the attenuation is said to be a linear attenuation and the relation becomes:

Sometimes the relation is given using the attenuation cross section of the material, that is its attenuation coefficient divided by its number density:

where

and if is uniform along the path, i.e., , the relation becomes:

Applications

Atomic physics

In atomic physics, the spectral optical depth of a cloud of atoms can be calculated from the quantum-mechanical properties of the atoms. It is given by

where

Atmospheric sciences

In atmospheric sciences, one often refers to the optical depth of the atmosphere as corresponding to the vertical path from Earth's surface to outer space; at other times the optical path is from the observer's altitude to outer space. The optical depth for a slant path is τ = , where τ′ refers to a vertical path, m is called the relative airmass, and for a plane-parallel atmosphere it is determined as m = sec θ where θ is the zenith angle corresponding to the given path. Therefore,

The optical depth of the atmosphere can be divided into several components, ascribed to Rayleigh scattering, aerosols, and gaseous absorption. The optical depth of the atmosphere can be measured with a Sun photometer.

The optical depth with respect to the height within the atmosphere is given by [3]

and it follows that the total atmospheric optical depth is given by [3]

In both equations:

The optical depth of a plane parallel cloud layer is given by [3]

where:

So, with a fixed depth and total liquid water path, . [3]

Astronomy

In astronomy, the photosphere of a star is defined as the surface where its optical depth is 2/3. This means that each photon emitted at the photosphere suffers an average of less than one scattering before it reaches the observer. At the temperature at optical depth 2/3, the energy emitted by the star (the original derivation is for the Sun) matches the observed total energy emitted.[ citation needed ][ clarification needed ]

Note that the optical depth of a given medium will be different for different colors (wavelengths) of light.

For planetary rings, the optical depth is the (negative logarithm of the) proportion of light blocked by the ring when it lies between the source and the observer. This is usually obtained by observation of stellar occultations.

Mars dust storm – optical depth tau – May to September 2018
(Mars Climate Sounder; Mars Reconnaissance Orbiter)
(1:38; animation; 30 October 2018; file description)

See also

Related Research Articles

The Beer–Lambert law is commonly applied to chemical analysis measurements to determine the concentration of chemical species that absorb light. It is often referred to as Beer's law. In physics, the Bouguer–Lambert law is an empirical law which relates the extinction or attenuation of light to the properties of the material through which the light is travelling. It had its first use in astronomical extinction. The fundamental law of extinction is sometimes called the Beer–Bouguer–Lambert law or the Bouguer–Beer–Lambert law or merely the extinction law. The extinction law is also used in understanding attenuation in physical optics, for photons, neutrons, or rarefied gases. In mathematical physics, this law arises as a solution of the BGK equation.

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

<span class="mw-page-title-main">Radiometry</span> Techniques for measuring electromagnetic radiation

Radiometry is a set of techniques for measuring electromagnetic radiation, including visible light. Radiometric techniques in optics characterize the distribution of the radiation's power in space, as opposed to photometric techniques, which characterize the light's interaction with the human eye. The fundamental difference between radiometry and photometry is that radiometry gives the entire optical radiation spectrum, while photometry is limited to the visible spectrum. Radiometry is distinct from quantum techniques such as photon counting.

<span class="mw-page-title-main">Reflectance</span> Capacity of an object to reflect light

The reflectance of the surface of a material is its effectiveness in reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the response of the electronic structure of the material to the electromagnetic field of light, and is in general a function of the frequency, or wavelength, of the light, its polarization, and the angle of incidence. The dependence of reflectance on the wavelength is called a reflectance spectrum or spectral reflectance curve.

<span class="mw-page-title-main">Fabry–Pérot interferometer</span> Optical device with parallel mirrors

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample ". Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". The term is used in many technical areas to quantify the results of an experimental measurement. While the term has its origin in quantifying the absorption of light, it is often entangled with quantification of light which is “lost” to a detector system through other mechanisms. What these uses of the term tend to have in common is that they refer to a logarithm of the ratio of a quantity of light incident on a sample or material to that which is detected after the light has interacted with the sample.

<span class="mw-page-title-main">Transmittance</span> Effectiveness of a material in transmitting radiant energy

In optical physics, transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field.

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre. It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

In radiometry, irradiance is the radiant flux received by a surface per unit area. The SI unit of irradiance is the watt per square metre (W⋅m−2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) is often used in astronomy. Irradiance is often called intensity, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity. In astrophysics, irradiance is called radiant flux.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.
<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

In general relativity, Schwarzschild geodesics describe the motion of test particles in the gravitational field of a central fixed mass that is, motion in the Schwarzschild metric. Schwarzschild geodesics have been pivotal in the validation of Einstein's theory of general relativity. For example, they provide accurate predictions of the anomalous precession of the planets in the Solar System and of the deflection of light by gravity.

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

<span class="mw-page-title-main">Inelastic mean free path</span> Index of how far electrons travel through a solid before losing energy

The inelastic mean free path (IMFP) is an index of how far an electron on average travels through a solid before losing energy.

<span class="mw-page-title-main">Radiant flux</span> Measure of radiant energy over time

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), one joule per second, while that of spectral flux in frequency is the watt per hertz and that of spectral flux in wavelength is the watt per metre —commonly the watt per nanometre.

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre, while that of spectral exitance in frequency is the watt per square metre per hertz (W·m−2·Hz−1) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre. The CGS unit erg per square centimeter per second is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A coefficient value that is large represents a beam becoming 'attenuated' as it passes through a given medium, while a small value represents that the medium had little effect on loss. The (derived) SI unit of attenuation coefficient is the reciprocal metre (m−1). Extinction coefficient is another term for this quantity, often used in meteorology and climatology. Most commonly, the quantity measures the exponential decay of intensity, that is, the value of downward e-folding distance of the original intensity as the energy of the intensity passes through a unit thickness of material, so that an attenuation coefficient of 1 m−1 means that after passing through 1 metre, the radiation will be reduced by a factor of e, and for material with a coefficient of 2 m−1, it will be reduced twice by e, or e2. Other measures may use a different factor than e, such as the decadic attenuation coefficient below. The broad-beam attenuation coefficient counts forward-scattered radiation as transmitted rather than attenuated, and is more applicable to radiation shielding. The mass attenuation coefficient is the attenuation coefficient normalized by the density of the material.

Laser linewidth is the spectral linewidth of a laser beam.

References

  1. 1 2 3 IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " Absorbance ". doi : 10.1351/goldbook.A00028
  2. Christopher Robert Kitchin (1987). Stars, Nebulae and the Interstellar Medium: Observational Physics and Astrophysics. CRC Press.
  3. 1 2 3 4 Petty, Grant W. (2006). A first course in atmospheric radiation. Sundog Pub. ISBN   9780972903318. OCLC   932561283.