Orexin-A

Last updated

Orexin-A, also known as hypocretin-1, is a naturally occurring neuropeptide and orexin isoform. The orexinergic nucleus in the lateral hypothalamus is the primary orexin projection system in the brain.

Contents

Structure

Orexin-A is a peptide composed of 33 amino acids including an N-terminal pyroglutamyl residue and two intramolecular disulfide bridges between cysteine residues in 6 and 12 and 7 and 14 positions.[ citation needed ]

The amino acid sequence is: Pyroglu-Pro-Leu-Pro-Asp-Cys-Cys-Arg-Gln-Lys-Thr-Cys-Ser-Cys-Arg-Leu-Tyr-Glu-Leu-Leu-His-Gly-Ala-Gly-Asn-His-Ala-Ala-Gly-Ile-Leu-Thr-Leu. [1] [2]

Mechanism

Orexins are highly excitatory neuropeptides that were first discovered in the brains of rats. It is a peptide that is produced by a very small population of cells in the lateral and posterior hypothalamus. Orexins strongly excite various brain nuclei (neurons) to affect an organism's wakefulness by affecting their dopamine, norepinephrine, histamine and acetylcholine systems. [3]

These systems work together to stabilize the organism's sleep cycles. Once made, the orexin peptides can bind to the orexin receptor; which is a G protein-coupled receptor. This receptor senses molecules outside the cell and activates inside signal transduction pathways to elicit cellular responses.

Research shows that an absence of orexin-A appears to cause narcolepsy. Deficit amounts of orexin-A will make people sleepy and research suggests that by adding it back into the brain, narcoleptic effects will be reduced. The research determined how glucose inhibited a particular class of glucose-sensing neurons, which produce orexins. However, it is unknown how glucose suppresses the electrical activity of orexin cells. [4]

A study from the University of Manchester discovered how glucose-inhibited neurons affected the regulation of sleep cycles. Tests show a class of potassium ion channels, pore-like proteins in the cell membrane, affect the cellular responses by controlling the flow of potassium into the cell. The exact mechanism of the potassium ion channels is unknown, but the experiments show that the presence of glucose inhibited the orexin neurons by acting on this class of potassium ion channels known as "tandem pore" channels. [5]

Ongoing research

The subjects of one particular study, rhesus monkeys, were deprived of sleep in durations of 30 to 36 hours, and were immediately assessed in short term memory tasks. The rhesus monkeys were split into a test group and into a control group. The test group was administered orexin-A, intravenously or nasally. The control group was given a placebo. The sleep-deprived monkeys which were given the nasal form of orexin-A performed far better than the ones treated with injections. Orexin-A not only restored the monkeys' cognitive abilities but made their brains appear awake in PET scans. The same was not true for the control group, which did not exhibit any changes. [6]

Related Research Articles

<span class="mw-page-title-main">Orexin</span> Neuropeptide that regulates arousal, wakefulness, and appetite.

Orexin, also known as hypocretin, is a neuropeptide that regulates arousal, wakefulness, and appetite. The most common form of narcolepsy, type 1, in which the individual experiences brief losses of muscle tone, is caused by a lack of orexin in the brain due to destruction of the cells that produce it. It exists in the forms of orexin-A and orexin-B.

<span class="mw-page-title-main">Cholecystokinin</span> Hormone of the gastrointestinal system

Cholecystokinin is a peptide hormone of the gastrointestinal system responsible for stimulating the digestion of fat and protein. Cholecystokinin, formerly called pancreozymin, is synthesized and secreted by enteroendocrine cells in the duodenum, the first segment of the small intestine. Its presence causes the release of digestive enzymes and bile from the pancreas and gallbladder, respectively, and also acts as a hunger suppressant.

Wakefulness is a daily recurring brain state and state of consciousness in which an individual is conscious and engages in coherent cognitive and behavioral responses to the external world.

β-Endorphin Peptide hormone in humans

β-Endorphin (beta-endorphin) is an endogenous opioid neuropeptide and peptide hormone that is produced in certain neurons within the central nervous system and peripheral nervous system. It is one of three endorphins that are produced in humans, the others of which include α-endorphin and γ-endorphin.

Neurophysin I is a carrier protein with a size of 10 KDa and contains 90 to 97 amino acids. It is a cleavage product of preprooxyphysin. It is a neurohypophysial hormone that is transported in vesicles with oxytocin, the other cleavage product, along axons, from magnocellular neurons of the hypothalamus to the posterior lobe of the pituitary. Although it is stored in neurosecretory granules with oxytocin and released with oxytocin, its biological action is unclear.

Cataplexy is a sudden and transient episode of muscle weakness accompanied by full conscious awareness, typically triggered by emotions such as laughing, crying, or terror. Cataplexy affects approximately 20% of people who have narcolepsy, and is caused by an autoimmune destruction of hypothalamic neurons that produce the neuropeptide hypocretin, which regulates arousal and has a role in stabilization of the transition between wake and sleep states. Cataplexy without narcolepsy is rare and the cause is unknown.

Growth hormone–releasing hormone (GHRH), also known as somatocrinin or by several other names in its endogenous forms and as somatorelin (INN) in its pharmaceutical form, is a releasing hormone of growth hormone (GH). It is a 44-amino acid peptide hormone produced in the arcuate nucleus of the hypothalamus.

Melanin-concentrating hormone (MCH), also known as pro-melanin stimulating hormone (PMCH), is a cyclic 19-amino acid orexigenic hypothalamic peptide originally isolated from the pituitary gland of teleost fish, where it controls skin pigmentation. In mammals it is involved in the regulation of feeding behavior, mood, sleep-wake cycle and energy balance.

<span class="mw-page-title-main">Lateral hypothalamus</span>

The lateral hypothalamus (LH), also called the lateral hypothalamic area (LHA), contains the primary orexinergic nucleus within the hypothalamus that widely projects throughout the nervous system; this system of neurons mediates an array of cognitive and physical processes, such as promoting feeding behavior and arousal, reducing pain perception, and regulating body temperature, digestive functions, and blood pressure, among many others. Clinically significant disorders that involve dysfunctions of the orexinergic projection system include narcolepsy, motility disorders or functional gastrointestinal disorders involving visceral hypersensitivity, and eating disorders.

<span class="mw-page-title-main">Vasotocin</span> Chemical compound

Vasotocin is an oligopeptide homologous to oxytocin and vasopressin found in all non-mammalian vertebrates and possibly in mammals during the fetal stage of development. Arginine vasotocin (AVT), a hormone produced by neurosecretory cells within the posterior pituitary gland (neurohypophysis) of the brain, is a major endocrine regulator of water balance and osmotic homoeostasis and is involved in social and sexual behavior in non-mammalian vertebrates. In mammals, it appears to have biological properties similar to those of oxytocin and vasopressin. It has been found to have effects on the regulation of REM sleep. Evidence for the existence of endogenous vasotocin in mammals is limited and no mammalian gene encoding vasotocin has been confirmed.

<span class="mw-page-title-main">Margatoxin</span>

Margatoxin (MgTX) is a peptide that selectively inhibits Kv1.3 voltage-dependent potassium channels. It is found in the venom of Centruroides margaritatus, also known as the Central American Bark Scorpion. Margatoxin was first discovered in 1993. It was purified from scorpion venom and its amino acid sequence was determined.

<span class="mw-page-title-main">Neurophysin II</span>

Neurophysin II is a carrier protein with a size of 19,687.3 Da and is made up of a dimer of two virtually identical chains of amino acids. Neurophysin II is a cleavage product of the AVP gene. It is a neurohypophysial hormone that is transported in vesicles with vasopressin, the other cleavage product, along axons, from magnocellular neurons of the hypothalamus to the posterior lobe of the pituitary. Although it is stored in neurosecretory granules with vasopressin and released with vasopressin into the bloodstream, its biological action is unclear. Neurophysin II is also known as a stimulator of prolactin secretion.

The orexin receptor (also referred to as the hypocretin receptor) is a G-protein-coupled receptor that binds the neuropeptide orexin. There are two variants, OX1 and OX2, each encoded by a different gene (HCRTR1, HCRTR2).

<span class="mw-page-title-main">Hypocretin (orexin) receptor 1</span> Protein-coding gene in the species Homo sapiens

Orexin receptor type 1 (Ox1R or OX1), also known as hypocretin receptor type 1 (HcrtR1), is a protein that in humans is encoded by the HCRTR1 gene.

<span class="mw-page-title-main">Hypocretin (orexin) receptor 2</span> Protein-coding gene in the species Homo sapiens

Orexin receptor type 2 (Ox2R or OX2), also known as hypocretin receptor type 2 (HcrtR2), is a protein that in humans is encoded by the HCRTR2 gene.

<span class="mw-page-title-main">Narcolepsy</span> Human sleep disorder that involves an excessive urge to sleep and other neurological features

Narcolepsy is a chronic neurological disorder that involves a decreased ability to regulate sleep–wake cycles. Symptoms often include periods of excessive daytime sleepiness and brief involuntary sleep episodes. Narcolepsy paired with cataplexy is evidenced to be an autoimmune disorder. These experiences of cataplexy can be brought on by strong emotions. Less commonly, there may be vivid hallucinations or an inability to move while falling asleep or waking up. People with narcolepsy tend to sleep about the same number of hours per day as people without, but the quality of sleep tends to be lessened.

<span class="mw-page-title-main">Guangxitoxin</span>

Guangxitoxin, also known as GxTX, is a peptide toxin found in the venom of the tarantula Plesiophrictus guangxiensis. It primarily inhibits outward voltage-gated Kv2.1 potassium channel currents, which are prominently expressed in pancreatic β-cells, thus increasing insulin secretion.

Hanatoxin is a toxin found in the venom of the Grammostola spatulata tarantula. The toxin is mostly known for inhibiting the activation of voltage-gated potassium channels, most specifically Kv4.2 and Kv2.1, by raising its activation threshold.

Thomas S. Kilduff is an American neuroscientist and the director of SRI International's Center for Neuroscience. He specializes in neurobiology related to sleep and wakefulness, and was involved in the discovery of hypocretin, a neuropeptide system that is highly involved in wakefulness regulation.

CNMamide (CNMa) is a cyclic neuropeptide identified by computational analysis of Drosophila melanogaster protein sequences and named after its C-terminal ending motif. A gene encoding CNMa was found in most arthropods and comparison among the precursor sequences of several representative species revealed high conservation, particularly in the region of the predicted mature peptide. Two conserved cysteine residues enveloping four amino acids form a disulfide bond and were shown to be important for binding of the peptide to its receptor. Expression of CNMa was confirmed in the larval and adult brain of D. melanogaster but the function of the peptide has not been elucidated yet.

References

  1. "Amino acid sequence in Orexin A EIA Kit (Human, Rat, Mouse)". Biokitsupply. Retrieved 2008-01-25.
  2. Johns, A.; Porter, R.A. (1999-11-18). "Amino acid sequence mentioned in "Phenylurea and phenylthio urea derivatives" patent". Google Patents. Retrieved 2008-01-25.
  3. Claudio L.A. Bassetti; et al. (2019). "Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment". Nature Reviews Neurology. 15 (9): 519–539. doi:10.1038/s41582-019-0226-9. PMID   31324898. S2CID   198132754 . Retrieved 2021-07-03.
  4. Raffaella Spinazzi; Paola G. Andreis; Gian Paolo Rossi; Gastone G. Nussdorfer (2006). "Orexins in the Regulation of Hypothalamic-Pituitary-Adrenal Axis". Pharmacological Reviews. 58 (1): 46–57. doi:10.1124/pr.58.1.4. PMID   16507882. S2CID   17941978 . Retrieved 2008-01-25.
  5. Denis Burdakov; et al. (31 May 2006). "New mechanism explains glucose effect on wakefulness". Neuron. Retrieved 2008-01-25.
  6. Deadwyler, S. A.; et al. (December 26, 2007). "Systemic and Nasal Delivery of Orexin-A (Hypocretin-1) Reduces the Effects of Sleep Deprivation on Cognitive Performance in Nonhuman Primates". The Journal of Neuroscience. 27 (52): 14239–14247. doi: 10.1523/JNEUROSCI.3878-07.2007 . PMC   6673447 . PMID   18160631.