Partition function (quantum field theory)

Last updated

In quantum field theory, partition functions are generating functionals for correlation functions, making them key objects of study in the path integral formalism. They are the imaginary time versions of statistical mechanics partition functions, giving rise to a close connection between these two areas of physics. Partition functions can rarely be solved for exactly, although free theories do admit such solutions. Instead, a perturbative approach is usually implemented, this being equivalent to summing over Feynman diagrams.

Contents

Generating functional

Scalar theories

In a -dimensional field theory with a real scalar field and action , the partition function is defined in the path integral formalism as the functional [1]

where is a fictitious source current. It acts as a generating functional for arbitrary n-point correlation functions

The derivatives used here are functional derivatives rather than regular derivatives since they are acting on functionals rather than regular functions. From this it follows that an equivalent expression for the partition function reminiscent to a power series in source currents is given by [2]

In curved spacetimes there is an added subtlety that must be dealt with due to the fact that the initial vacuum state need not be the same as the final vacuum state. [3] Partition functions can also be constructed for composite operators in the same way as they are for fundamental fields. Correlation functions of these operators can then be calculated as functional derivatives of these functionals. [4] For example, the partition function for a composite operator is given by

Knowing the partition function completely solves the theory since it allows for the direct calculation of all of its correlation functions. However, there are very few cases where the partition function can be calculated exactly. While free theories do admit exact solutions, interacting theories generally do not. Instead the partition function can be evaluated at weak coupling perturbatively, which amounts to regular perturbation theory using Feynman diagrams with insertions on the external legs. [5] The symmetry factors for these types of diagrams differ from those of correlation functions since all external legs have identical insertions that can be interchanged, whereas the external legs of correlation functions are all fixed at specific coordinates and are therefore fixed.

By performing a Wick transformation, the partition function can be expressed in Euclidean spacetime as [6]

where is the Euclidean action and are Euclidean coordinates. This form is closely connected to the partition function in statistical mechanics, especially since the Euclidean Lagrangian is usually bounded from below in which case it can be interpreted as an energy density. It also allows for the interpretation of the exponential factor as a statistical weight for the field configurations, with larger fluctuations in the gradient or field values leading to greater suppression. This connection with statistical mechanics also lends additional intuition for how correlation functions should behave in a quantum field theory.

General theories

Most of the same principles of the scalar case hold for more general theories with additional fields. Each field requires the introduction of its own fictitious current, with antiparticle fields requiring their own separate currents. Acting on the partition function with a derivative of a current brings down its associated field from the exponential, allowing for the construction of arbitrary correlation functions. After differentiation, the currents are set to zero when correlation functions in a vacuum state are desired, but the currents can also be set to take on particular values to yield correlation functions in non-vanishing background fields.

For partition functions with Grassmann valued fermion fields, the sources are also Grassmann valued. [7] For example, a theory with a single Dirac fermion requires the introduction of two Grassmann currents and so that the partition function is

Functional derivatives with respect to give fermion fields while derivatives with respect to give anti-fermion fields in the correlation functions.

Thermal field theories

A thermal field theory at temperature is equivalent in Euclidean formalism to a theory with a compactified temporal direction of length . Partition functions must be modified appropriately by imposing periodicity conditions on the fields and the Euclidean spacetime integrals

This partition function can be taken as the definition of the thermal field theory in imaginary time formalism. [8] Correlation functions are acquired from the partition function through the usual functional derivatives with respect to currents

Free theories

The partition function can be solved exactly in free theories by completing the square in terms of the fields. Since a shift by a constant does not affect the path integral measure, this allows for separating the partition function into a constant of proportionality arising from the path integral, and a second term that only depends on the current. For the scalar theory this yields

where is the position space Feynman propagator

This partition function fully determines the free field theory.

In the case of a theory with a single free Dirac fermion, completing the square yields a partition function of the form

where is the position space Dirac propagator

Related Research Articles

<span class="mw-page-title-main">Feynman diagram</span> Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation . Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

<span class="mw-page-title-main">Correlation function (quantum field theory)</span> Expectation value of time-ordered quantum operators

In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements. They are closely related to correlation functions between random variables, although they are nonetheless different objects, being defined in Minkowski spacetime and on quantum operators.

<span class="mw-page-title-main">Schwinger–Dyson equation</span> Equations for correlation functions in QFT

The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation functions in quantum field theories (QFTs). They are also referred to as the Euler–Lagrange equations of quantum field theories, since they are the equations of motion corresponding to the Green's function. They form a set of infinitely many functional differential equations, all coupled to each other, sometimes referred to as the infinite tower of SDEs.

<span class="mw-page-title-main">Effective action</span> Quantum version of the classical action

In quantum field theory, the quantum effective action is a modified expression for the classical action taking into account quantum corrections while ensuring that the principle of least action applies, meaning that extremizing the effective action yields the equations of motion for the vacuum expectation values of the quantum fields. The effective action also acts as a generating functional for one-particle irreducible correlation functions. The potential component of the effective action is called the effective potential, with the expectation value of the true vacuum being the minimum of this potential rather than the classical potential, making it important for studying spontaneous symmetry breaking.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.

<span class="mw-page-title-main">Callan–Symanzik equation</span> Evolutionary equation under renormalization group flow

In physics, the Callan–Symanzik equation is a differential equation describing the evolution of the n-point correlation functions under variation of the energy scale at which the theory is defined and involves the beta function of the theory and the anomalous dimensions.

In theoretical physics, a source field is a background field coupled to the original field as

<span class="mw-page-title-main">Background field method</span> Technique in quantum field theory

In theoretical physics, background field method is a useful procedure to calculate the effective action of a quantum field theory by expanding a quantum field around a classical "background" value B:

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967. This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the mild-slope equation, or using the averaged Lagrangian approach for wave propagation in inhomogeneous media.

In quantum field theory, and especially in quantum electrodynamics, the interacting theory leads to infinite quantities that have to be absorbed in a renormalization procedure, in order to be able to predict measurable quantities. The renormalization scheme can depend on the type of particles that are being considered. For particles that can travel asymptotically large distances, or for low energy processes, the on-shell scheme, also known as the physical scheme, is appropriate. If these conditions are not fulfilled, one can turn to other schemes, like the minimal subtraction scheme.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In theoretical physics, Hamiltonian field theory is the field-theoretic analogue to classical Hamiltonian mechanics. It is a formalism in classical field theory alongside Lagrangian field theory. It also has applications in quantum field theory.

References

  1. Rivers, R.J. (1988). "1". Path Integral Methods in Quantum Field Theory. Cambridge: Cambridge University Press. pp. 14–16. ISBN   978-0521368704.
  2. Năstase, H. (2019). "9". Introduction to Quantum Field Theory. Cambridge University Press. p. 78. ISBN   978-1108493994.
  3. Birrell, N.C.; Davis, P.C.W. (1984). "6". Quantum Fields in Curved Spacetime. Cambridge University Press. pp. 155–156. ISBN   978-0521278584.
  4. Năstase, H. (2015). "1". Introduction to the AdS/CFT Correspondance. Cambridge: Cambridge University Press. pp. 9–10. ISBN   978-1107085855.
  5. Srednicki, M. (2007). "9". Quantum Field Theory. Cambridge: Cambridge University Press. pp. 58–60. ISBN   978-0521864497.
  6. Peskin, Michael E.; Schroeder, Daniel V. (1995). "9". An Introduction to Quantum Field Theory. Westview Press. pp. 289–292. ISBN   9780201503975.
  7. Schwartz, M. D. (2014). "34". Quantum Field Theory and the Standard Model. Cambridge University Press. p. 272. ISBN   9781107034730.
  8. Le Bellac, M. (2008). "3". Thermal Field Theory. Cambridge University Press. pp. 36–37. ISBN   978-0521654777.

Further reading