Pentagonal planar molecular geometry

Last updated
Pentagonal planar molecular geometry
Pentagonal-planar-3D-balls.png
Examples XeF5
Point group D5h
Coordination number 5
Bond angle(s)72°
μ (Polarity) 0

In chemistry, the pentagonal planar molecular geometry describes the shape of compounds where five atoms, groups of atoms, or ligands are arranged around a central atom, defining the vertices of a pentagon.

AX5E2 AX5E2-2D.png
AX5E2

Examples

The only two pentagonal planar species known are the isoelectronic (nine valence electrons) ions XeF
5
and IF2−
5
. [1] Both are derived from the pentagonal bipyramid with two lone pairs occupying the apical positions and the five fluorine atoms all equatorial.

Related Research Articles

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

<span class="mw-page-title-main">Fullerene</span> Allotrope of carbons

A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ellipsoid, tube, or many other shapes and sizes. Graphene, which is a flat mesh of regular hexagonal rings, can be seen as an extreme member of the family.

<span class="mw-page-title-main">Double bond</span> Chemical bond involving four bonding electrons; has one sigma plus one pi bond

In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist between two different elements: for example, in a carbonyl group between a carbon atom and an oxygen atom. Other common double bonds are found in azo compounds (N=N), imines (C=N), and sulfoxides (S=O). In a skeletal formula, a double bond is drawn as two parallel lines (=) between the two connected atoms; typographically, the equals sign is used for this. Double bonds were first introduced in chemical notation by Russian chemist Alexander Butlerov.

<span class="mw-page-title-main">VSEPR theory</span> Model for predicting molecular geometry

Valence shell electron pair repulsion (VSEPR) theory, is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. It is also named the Gillespie-Nyholm theory after its two main developers, Ronald Gillespie and Ronald Nyholm.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

Cyclopentane (also called C pentane) is a highly flammable alicyclic hydrocarbon with chemical formula C5H10 and CAS number 287-92-3, consisting of a ring of five carbon atoms each bonded with two hydrogen atoms above and below the plane. It occurs as a colorless liquid with a petrol-like odor. Its freezing point is −94 °C and its boiling point is 49 °C. Cyclopentane is in the class of cycloalkanes, being alkanes that have one or more carbon rings. It is formed by cracking cyclohexane in the presence of alumina at a high temperature and pressure.

<span class="mw-page-title-main">Trigonal pyramidal molecular geometry</span> Molecular geometry with one atom at the apex and three atoms at the corners of a trigonal base

In chemistry, a trigonal pyramid is a molecular geometry with one atom at the apex and three atoms at the corners of a trigonal base, resembling a tetrahedron (not to be confused with the tetrahedral geometry). When all three atoms at the corners are identical, the molecule belongs to point group C3v. Some molecules and ions with trigonal pyramidal geometry are the pnictogen hydrides (XH3), xenon trioxide (XeO3), the chlorate ion, ClO
3
, and the sulfite ion, SO2−
3
. In organic chemistry, molecules which have a trigonal pyramidal geometry are sometimes described as sp3 hybridized. The AXE method for VSEPR theory states that the classification is AX3E1.

<span class="mw-page-title-main">Trigonal planar molecular geometry</span> Molecular geometry of symmetry D_3h

In chemistry, trigonal planar is a molecular geometry model with one atom at the center and three atoms at the corners of an equilateral triangle, called peripheral atoms, all in one plane. In an ideal trigonal planar species, all three ligands are identical and all bond angles are 120°. Such species belong to the point group D3h. Molecules where the three ligands are not identical, such as H2CO, deviate from this idealized geometry. Examples of molecules with trigonal planar geometry include boron trifluoride (BF3), formaldehyde (H2CO), phosgene (COCl2), and sulfur trioxide (SO3). Some ions with trigonal planar geometry include nitrate (NO
3
), carbonate (CO2−
3
), and guanidinium (C(NH
2
)+
3
). In organic chemistry, planar, three-connected carbon centers that are trigonal planar are often described as having sp2 hybridization.

<span class="mw-page-title-main">Trigonal bipyramidal molecular geometry</span> Molecular structure with atoms at the center and vertices of a triangular bipyramid

In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. This is one geometry for which the bond angles surrounding the central atom are not identical, because there is no geometrical arrangement with five terminal atoms in equivalent positions. Examples of this molecular geometry are phosphorus pentafluoride, and phosphorus pentachloride in the gas phase.

<span class="mw-page-title-main">Ring strain</span> Instability in molecules with bonds at unnatural angles

In organic chemistry, ring strain is a type of instability that exists when bonds in a molecule form angles that are abnormal. Strain is most commonly discussed for small rings such as cyclopropanes and cyclobutanes, whose internal angles are substantially smaller than the idealized value of approximately 109°. Because of their high strain, the heat of combustion for these small rings is elevated.

Planar chirality, also known as 2D chirality, is the special case of chirality for two dimensions.

<span class="mw-page-title-main">Copper monosulfide</span> Chemical compound

Copper monosulfide is a chemical compound of copper and sulfur. It was initially thought to occur in nature as the dark indigo blue mineral covellite. However, it was later shown to be rather a cuprous compound, formula Cu+3S(S2). CuS is a moderate conductor of electricity. A black colloidal precipitate of CuS is formed when hydrogen sulfide, H2S, is bubbled through solutions of Cu(II) salts. It is one of a number of binary compounds of copper and sulfur (see copper sulfide for an overview of this subject), and has attracted interest because of its potential uses in catalysis and photovoltaics.

<span class="mw-page-title-main">Spiro compound</span> Organic molecule with two or more rings sharing a common atom

In organic chemistry, spiro compounds are compounds that have at least two molecular rings with only one common atom. The simplest spiro compounds are bicyclic, or have a bicyclic portion as part of the larger ring system, in either case with the two rings connected through the defining single common atom. The one common atom connecting the participating rings distinguishes spiro compounds from other bicyclics: from isolated ring compounds like biphenyl that have no connecting atoms, from fused ring compounds like decalin having two rings linked by two adjacent atoms, and from bridged ring compounds like norbornane with two rings linked by two non-adjacent atoms.

In chemistry, the cyclopentadienyl anion or cyclopentadienide is an aromatic species with a formula of [C
5
H
5
]
and abbreviated as Cp. It is formed by the deprotonation of cyclopentadiene. The cyclopentadienyl anion is a ligand which binds to a metal in organometallic chemistry.

<span class="mw-page-title-main">Pentagonal bipyramidal molecular geometry</span> Molecular structure having atoms at the centre and corners of a pentagonal bipyramid

In chemistry, a pentagonal bipyramid is a molecular geometry with one atom at the centre with seven ligands at the corners of a pentagonal bipyramid. A perfect pentagonal bipyramid belongs to the molecular point group D5h.

<span class="mw-page-title-main">Linear molecular geometry</span> 3D shape of molecules in which all bond angles are 180°

The linear molecular geometry describes the geometry around a central atom bonded to two other atoms placed at a bond angle of 180°. Linear organic molecules, such as acetylene, are often described by invoking sp orbital hybridization for their carbon centers.

<span class="mw-page-title-main">T-shaped molecular geometry</span> Type of molecular geometry

In chemistry, T-shaped molecular geometry describes the structures of some molecules where a central atom has three ligands. Ordinarily, three-coordinated compounds adopt trigonal planar or pyramidal geometries. Examples of T-shaped molecules are the halogen trifluorides, such as ClF3.

<span class="mw-page-title-main">Tetramethylammonium pentafluoroxenate</span> Chemical compound

Tetramethylammonium pentafluoroxenate is the chemical compound with the formula N(CH3)4XeF5. The XeF
5
ion it contains was the first example of a pentagonal planar molecular geometry AX5E2 species. It was prepared by the reaction of N(CH3)4F with xenon tetrafluoride, N(CH3)4F being chosen because it can be prepared in anhydrous form and is readily soluble in organic solvents. The anion is planar, with the fluorine atoms in a slightly distorted pentagonal coordination (Xe–F bond lengths 197.9–203.4 pm, and F–X–F bond angles 71.5°–72.3°). Other salts have been prepared with sodium, cesium and rubidium, and vibrational spectra show that these contain the same planar ion. The isolated anion has the point group of D5h.

<span class="mw-page-title-main">Planar hexacoordinate carbon</span>

Planar hexacoordinate carbon in chemistry describes a molecular geometry featuring a planar arrangement of carbon with six surrounding atoms. No actual chemical compounds having this particular hexacoordinate configuration have been reported but quantum mechanical methods have demonstrated that these molecules are a possibility. Examples of molecules investigated with computational methods are the B6C dianion, the CN3Be3+ ion, the CO3Li3+ ion and the CN3Mg3+ ion. A simulated Be2C monolayer is reported to consist of quasi-planar hexacoordinate carbon atoms.

<span class="mw-page-title-main">Cyclopentasilane</span> Chemical compound

Cyclopentasilane is a cyclic compound of silicon and hydrogen with the chemical formula Si5H10. Containing five silicon atoms arranged in a pentagonal ring, it is the silicon analog of cyclopentane. Cyclopentasilane is a colorless pyrophoric liquid. It is an oligosilane. It is of research interest because of its potential use as a liquid silicon ink for printing silicon structures on integrated circuits or solar cells.

References

  1. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. p. 498. ISBN   978-0130399137.