Phaeodarea

Last updated

Phaeodarea
Haeckel Phaeodaria 1.jpg
"Phaeodaria" from Ernst Haeckel's Kunstformen der Natur , 1904
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Phylum: Cercozoa
Class: Thecofilosea
Subclass: Phaeodaria
Haeckel 1879
Orders
Diversity
400-500 species [1]
Synonyms [2]

Tripylea Hertwig 1879

Phaeodarea or Phaeodaria is a group of amoeboid cercozoan organisms. They are traditionally considered radiolarians, [3] but in molecular trees do not appear to be close relatives of the other groups, and are instead placed among the Cercozoa. [4] They are distinguished by the structure of their central capsule and by the presence of a phaeodium, an aggregate of waste particles within the cell.

Contents

The term "Radiozoa" has been used to refer to radiolaria when Phaeodarea is explicitly excluded. [5]

Phaeodarea produce hollow skeletons composed of amorphous silica and organic material, which rarely fossilize. The endoplasm is divided by a cape with three openings, of which one gives rise to feeding pseudopods, and the others let through bundles of microtubules that support the axopods. Unlike true radiolarians, there are no cross-bridges between them. They also lack symbiotic algae, generally living below the photic zone, and do not produce any strontium sulphate.

Characteristics

Cell structure

Phaeodarea are unicellular protists that grow a capsule with a thick, double-layered wall containing two kinds of pores or openings: the large type, known as "astropylum" or oral pore, from which a massive strand of cytoplasm protrudes; and the smaller type, known as "parapylae" or lateral pores, from which thinner strands of cytoplasm protrude. External to the capsule there is a large, often darkly pigmented, mass of granular cytoplasm called "phaeodium" which contains undigested or partially digested food or debris. Their mitochondrial cristae are tubular. [6] [1]

Most Phaeodaria have a siliceous skeleton composed of amorphous silica joined by organic matter. They may contain more organic matter than Polycystinea (Radiolaria). Skeletons of some species are composed of hollow bars, instead of solid rods as in Polycystinea. Others have ornate spicules scattered through the external cytoplasm in a variety of forms, including geodesic frameworks, spheres or polyhedra. Other species have porous shells that are either bivalved, resembling clams, or vase-like with ornamentations around the opening. Other species have highly branched antler-llike spines stemming from a central shell. Unlike Polycystinea, the capsular wall surrounding the denser endoplasm of Phaeodarea lacks fusules. [6] [1]

Their cell size ranges from hundreds of micrometres to a few millimetres, roughly depending on the family. For example, species of Tuscaroridae exceed 3 mm, while Challengeriidae are generally smaller than a few hundred μm. Some phaeodarians with spherical skeletons are similar to Polycystinea and Acantharea (Radiolaria), although they are more porous and fragile. Some species of the family Challengeriidae resemble marine dinoflagellates, but can be correctly distinguished by the presence of a phaeodium and absence of grooves. [7]

Nutrition

The continuous, massive strand of cytoplasm in the astropyle of Phaeodarea provides a pathway to carry digested prey matter into the endoplasm, similarly to some testate amoebae and foraminifera. Among the limited evidence of phaeodarian predation, it was reported in 1986 that a mesopelagic phaeodarian had absorbed microflagellate and metazoan prey. [8] When introduced in the laboratory cultures, copepods and salps also were snared by phaeodaria. [1]

Reproduction

Sexual reproduction of Phaeodaria has not been confirmed, but the release of motile swarmers that are likely gametes is widely documented. In the species Coelodendrum ramosissimum , dispersal starts with the disappearance of the phaeodium, followed by the dissolution of the capsule and the creation of small plasmodial spheres in the ectoplasm; each of the spheres produces hundreds of multinucleated amoebae that eventually form swarmers with two undulipodia (flagella). [1]

Ecology

Phaeodaria are exclusively marine, holoplanktonic unicellular protists that play an important role in marine ecosystems. They are heterotrophic plankton (zooplankton) that chiefly live in pelagic open oceans, from the surface to the deep sea. They have not been reported from brackish and high-salinity environments, but they are present in all oceans. [7]

Very little is known about their role in the trophic web and about their predators. Dinoflagellate necrotrophs are reported to infect species of Phaeodaria, such as Syndinium nucleophaga . [1]

Systematics

History

As a protist group often broken by normal sampling methods and not very abundant in comparison with other organisms in the euphotic zone, Phaeodaria have attracted little attention from plankton researchers. The majority of taxonomic and ecological information regarding Phaeodaria, studied by German scientists, ended after World War I, and it has been little updated until today. Because of the presence of an organic central capsule and "ray-like pseudopodia", Phaeodaria were historically regarded as Radiolaria, along with Polycystinea and Acantharea. [7] The marine Radiolaria were, along with the freshwater Heliozoa, assigned to the phylum Actinopoda due to their elaborate siliceous skeletons surrounding the central capsule with pores from which axopodia emerge. [4]

Through molecular phylogenetics, Actinopoda was rendered invalid due to being polyphyletic, not a natural group. Phaeodaria are now classified as a subclass of the phylum Cercozoa, while the ecologically different "true" Radiolaria belong to the related phylum Retaria, both within the higher Rhizaria supergroup. [1] [2] [7] The following cladogram shows the phylogenetic position of all groups of "Actinopoda" (highlighted). [4] [6]

Diaphoretickes

Phylogeny

Through phylogenetic analyses it has been discovered that Phaeodarea is a monophyletic clade, but the historical orders and families comprising it aren't. Instead, the clade consists of 11 subclades defined by morphological and phylogenetic values that do not correspond with the traditional orders and families: [9]

clade A

clade B

clade C

clade D

clade E     

clade F

clade G

clade H

clade I

clade J

clade K

Despite this, the current taxonomy by Cavalier-Smith maintains the original classification of suborders [10] divided between two new orders: [11] [12]

Modern classification

The modern classification is the following, with the subclass containing a total of 2 orders, 7 suborders, [11] [12] 16 families and 39 genera. [13]

Related Research Articles

<span class="mw-page-title-main">Acantharea</span> Class of single-celled organisms

The Acantharea (Acantharia) are a group of radiolarian protozoa, distinguished mainly by their strontium sulfate skeletons. Acantharians are heterotrophic marine microplankton that range in size from about 200 microns in diameter up to several millimeters. Some acantharians have photosynthetic endosymbionts and hence are considered mixotrophs.

The gymnosphaerids are a small group of heliozoan protists found in marine environments. They tend to be roughly spherical with radially directed axopods, supported by microtubules in a triangular-hexagonal array arising from an amorphous central granule.

<span class="mw-page-title-main">Centrohelid</span> Group of algae

The centrohelids or centroheliozoa are a large group of heliozoan protists. They include both mobile and sessile forms, found in freshwater and marine environments, especially at some depth.

<span class="mw-page-title-main">Radiolaria</span> Phylum of single-celled organisms

The Radiolaria, also called Radiozoa, are protozoa of diameter 0.1–0.2 mm that produce intricate mineral skeletons, typically with a central capsule dividing the cell into the inner and outer portions of endoplasm and ectoplasm. The elaborate mineral skeleton is usually made of silica. They are found as zooplankton throughout the global ocean. As zooplankton, radiolarians are primarily heterotrophic, but many have photosynthetic endosymbionts and are, therefore, considered mixotrophs. The skeletal remains of some types of radiolarians make up a large part of the cover of the ocean floor as siliceous ooze. Due to their rapid change as species and intricate skeletons, radiolarians represent an important diagnostic fossil found from the Cambrian onwards.

<span class="mw-page-title-main">Noctilucales</span> Order of single-celled organisms

The Noctilucales are an order of marine dinoflagellates. They differ from most others in that the mature cell is diploid and its nucleus does not show a dinokaryotic organization. They show gametic meiosis.

<span class="mw-page-title-main">Heliozoa</span> Phylum of protists with spherical bodies

Heliozoa, commonly known as sun-animalcules, are microbial eukaryotes (protists) with stiff arms (axopodia) radiating from their spherical bodies, which are responsible for their common name. The axopodia are microtubule-supported projections from the amoeboid cell body, and are variously used for capturing food, sensation, movement, and attachment. They are similar to Radiolaria, but they are distinguished from them by lacking central capsules and other complex skeletal elements, although some produce simple scales and spines. They may be found in both freshwater and marine environments.

<span class="mw-page-title-main">Cercozoa</span> Group of single-celled organisms

Cercozoa is a phylum of diverse single-celled eukaryotes. They lack shared morphological characteristics at the microscopic level, and are instead united by molecular phylogenies of rRNA and actin or polyubiquitin. They were the first major eukaryotic group to be recognized mainly through molecular phylogenies. They are the natural predators of many species of bacteria. They are closely related to the phylum Retaria, comprising amoeboids that usually have complex shells, and together form a supergroup called Rhizaria.

<span class="mw-page-title-main">Rhizaria</span> Infrakingdom of protists

The Rhizaria are a diverse and species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthethic, but many foraminifera and radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon. Being described mainly from rDNA sequences, they vary considerably in form, having no clear morphological distinctive characters (synapomorphies), but for the most part they are amoeboids with filose, reticulose, or microtubule-supported pseudopods. In the absence of an apomorphy, the group is ill-defined, and its composition has been very fluid. Some Rhizaria possess mineral exoskeletons, which are in different clades within Rhizaria made out of opal, celestite, or calcite. Certain species can attain sizes of more than a centimeter with some species being able to form cylindrical colonies approximately 1 cm in diameter and greater than 1 m in length. They feed by capturing and engulfing prey with the extensions of their pseudopodia; forms that are symbiotic with unicellular algae contribute significantly to the total primary production of the ocean.

<span class="mw-page-title-main">Retaria</span> Phylum of single-celled organisms

Retaria is a clade within the supergroup Rhizaria containing the Foraminifera and the Radiolaria. In 2019, the Retaria were recognized as a basal Rhizaria group, as sister of the Cercozoa.

<span class="mw-page-title-main">Endomyxa</span> Group of single-celled organisms

Endomyxa is a group of eukaryotic organisms in the supergroup Rhizaria. They were initially a subphylum of Cercozoa and later a subphylum of Retaria, but several analyses have proven they are a phylogenetically separate lineage, and Endomyxa is currently regarded as its own phylum.

<span class="mw-page-title-main">Imbricatea</span> Class of single-celled organisms

Imbricatea is a class of Rhizaria characterised by silica scales. It is sometimes described as "Imbricatea/Silicofilosea", due to the similarity of those two groupings. Imbricatea is divided into the orders Euglyphida and Thaumatomonadida.

<span class="mw-page-title-main">Thecofilosea</span> Class of single-celled organisms

Thecofilosea is a class of unicellular testate amoebae belonging to the phylum Cercozoa. They are amoeboflagellates, organisms with flagella and pseudopodia, distinguished from other cercozoa by their scale-lacking test composed of organic material. They are closely related to the Imbricatea, a group of testate amoebae with tests composed of inorganic silica scales.

<span class="mw-page-title-main">Sarcomonadea</span> Class of flagellate protists

The sarcomonads or class Sarcomonadea are a group of amoeboid biciliate protists in the phylum Cercozoa. They are characterized by a propensity to move through gliding on their posterior cilium or through filopodia, a lack of scales or external theca, a soft cell surface without obvious cortical filamentous or membranous skeleton, two cilia without scales or hairs, tubular mitochondrial cristae, near-spherical extrusomes, and a microbody attached to the nucleus.

<span class="mw-page-title-main">Vampyrellida</span> Order of single-celled organisms

The vampyrellids, colloquially known as vampire amoebae, are a group of free-living predatory amoebae classified as part of the lineage Endomyxa. They are distinguished from other groups of amoebae by their irregular cell shape with propensity to fuse and split like plasmodial organisms, and their life cycle with a digestive cyst stage that digests the gathered food. They appear worldwide in marine, brackish, freshwater and soil habitats. They are important predators of an enormous variety of microscopic organisms, from algae to fungi and animals. They are also known as aconchulinid amoebae.

<span class="mw-page-title-main">Nassellaria</span> Order of single-celled organisms

Nassellaria is an order of Rhizaria belonging to the class Radiolaria. The organisms of this order are characterized by a skeleton cross link with a cone or ring.

<span class="mw-page-title-main">Phaeocystida</span> Group of single-celled organisms

Phaeocystida, also known as Phaeocystina, is a group of cercozoans in the class Phaeodarea. It was first described by Ernst Haeckel in 1887 and treated traditionally as a suborder, but later was raised to order level until Cavalier-Smith's classification lowered it again to suborder level. It belongs to the order Eodarida, characterised by simpler silica skeletons or a lack thereof.

<span class="mw-page-title-main">Collodaria</span> Order of single-celled organisms

Collodaria is a unicellular order under the phylum Radiozoa and the infrakingdom Rhizaria. Like most of the Radiolaria taxonomy, Collodaria was first described by Ernst Haeckel, a German scholar who published three volumes of manuscript describing the extensive samples of Radiolaria collected by the voyage of HMS Challenger. Recent molecular phylogenetic studies concluded that there are Collodaria contains three families, Sphaerozodae, Collosphaeridae, and Collophidilidae.

<span class="mw-page-title-main">Plasmodiophore</span> Group of fungi-like protists

The plasmodiophores are a group of obligate endoparasitic protists belonging to the subphylum Endomyxa in Cercozoa. Taxonomically, they are united under a single family Plasmodiophoridae, order Plasmodiophorida, sister to the phagomyxids.

The paracercomonads are a group of cercozoan protists. Taxonomically, they comprise the family Paracercomonadidae, order Paracercomonadida and subclass Paracercomonada. Due to their morphological similarities to the cercomonads, members of this family were grouped with Cercomonas and similar taxa from the beginning. However, their similarities are due to convergent evolution.

<i>Astracantha</i> (protist) Species of cercozoan

Astracantha is a genus of planktonic phaeodaria and the only member of the family Astracanthidae. They are an unusual family of marine protists, but can be found across all oceans, from tropical to Arctic and Antarctic waters.

References

  1. 1 2 3 4 5 6 7 Boltovskoy D, Anderson OR, Correa NM (2017). "Radiolaria and Phaeodaria". In Archibald JM, Simpson AGB, Slamovits CH (eds.). Handbook of the Protists (2nd ed.). Springer International Publishing AG. pp. 731–763. doi:10.1007/978-3-319-28149-0_19. ISBN   978-3-319-28149-0.
  2. 1 2 Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, et al. (2012). "The revised classification of eukaryotes". Journal of Eukaryotic Microbiology. 59 (5): 429–493. doi: 10.1111/j.1550-7408.2012.00644.x . PMC   3483872 .
  3. Polet S, Berney C, Fahrni J, Pawlowski J (2004). "Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria". Protist. 155 (1): 53–63. doi:10.1078/1434461000164. PMID   15144058.
  4. 1 2 3 Nikolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004). "The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes". Proceedings of the National Academy of Sciences. 101 (21): 8066–8071. doi: 10.1073/pnas.0308602101 . ISSN   0027-8424. PMC   419558 . PMID   15148395.
  5. Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T (2007). "Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata". Molecular Phylogenetics and Evolution. 44 (1): 255–66. doi:10.1016/j.ympev.2006.11.001. PMID   17174576.
  6. 1 2 3 Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. (2019). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691. PMC   6492006 . PMID   30257078.
  7. 1 2 3 4 Nakamura, Yasuhide; Suzuki, Noritoshi (2015). "Chapter 9. Phaeodaria: Diverse Marine Cercozoans of World-Wide Distribution". In Ohtsuka, Susumu; Suzaki, Toshinobu; Horiguchi, Takeo; Suzuki, Noritoshi; Not, Fabrice (eds.). Marine Protists: Diversity and Dymanics. Springer Japan. pp. 223–249. doi:10.1007/978-4-431-55130-0_9. ISBN   978-4-431-55130-0.
  8. Swanberg N, Bennett P, Lindsey JL, Anderson OR (1986). "The biology of a coelodendrid: a mesopelagic phaeodarian radiolarian". Deep Sea Research Part A. Oceanographic Research Papers. 33 (1): 15–25. doi:10.1016/0198-0149(86)90105-6.
  9. Nakamura Y, Imai I, Yamaguchi A, Tuji A, Not F, Suzuki N (2015). "Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa)". Protist. 166 (3): 363–373. doi: 10.1016/j.protis.2015.05.004 . PMID   26083083.
  10. Calkins GN (1926). The biology of the Protozoa. Lea & Febiger, Philadelphia, New York.
  11. 1 2 Cavalier-Smith T, Chao EE (2012). "Oxnerella micra sp. n. (Oxnerellidae fam. n.), a Tiny Naked Centrohelid, and the Diversity and Evolution of Heliozoa". Protist. 163 (4): 574–601. doi:10.1016/j.protis.2011.12.005. ISSN   1434-4610. PMID   22317961.
  12. 1 2 Cavalier-Smith T, Chao EE, Lewis R (2018). "Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria". Protoplasma. 255 (5): 1517–1574. doi: 10.1007/s00709-018-1241-1 . PMC   6133090 . PMID   29666938.
  13. Takahashi K, Anderson OR (2000). "Class Phaeodaria" (PDF). In Lee JJ, Leedale GF, Bradbury P (eds.). Illustrated Guide to the Protozoa. Vol. II (2nd ed.). Society of Protozoologists, Lawrence, Kansas. pp. 981–994.