Picture plane

Last updated

In painting, photography, graphical perspective and descriptive geometry, a picture plane is an image plane located between the "eye point" (or oculus ) and the object being viewed and is usually coextensive to the material surface of the work. It is ordinarily a vertical plane perpendicular to the sightline to the object of interest.

Contents

Features

In the technique of graphical perspective the picture plane has several features:

Given are an eye point O (from oculus ), a horizontal plane of reference called the ground planeγ and a picture plane π... The line of intersection of π and γ is called the ground line and denoted GR. ... the orthogonal projection of O upon π is called the principal vanishing point P...The line through P parallel to the ground line is called the horizon HZ [1]

The horizon frequently features vanishing points of lines appearing parallel in the foreground.

The technique for creating a basic two-point perspective drawing, including the sight rays, the picture plane, the left and right vanishing point construction lines, the horizon line, and the ground line Perspective drawing.jpg
The technique for creating a basic two-point perspective drawing, including the sight rays, the picture plane, the left and right vanishing point construction lines, the horizon line, and the ground line

Position

The orientation of the picture plane is always perpendicular of the axis that comes straight out of your eyes. For example, if you are looking to a building that is in front of you and your eyesight is entirely horizontal then the picture plane is perpendicular to the ground and to the axis of your sight.

If you are looking up or down, then the picture plane remains perpendicular to your sight and it changes the 90 degrees angle compared to the ground. When this happens a third vanishing point will appear in most cases depending on what you are seeing (or drawing).

Cut of an eject

G. B. Halsted included the picture plane in his book Synthetic Projective Geometry: "To 'project' from a fixed point M (the 'projection vertex') a figure, the 'original', composed of points B, C, D etc. and straights b, c, d etc., is to construct the 'projecting straights' and the 'projecting planes' Thus is obtained a new figure composed of straights and planes, all on M, and called an 'eject' of the original."

"To 'cut' by a fixed plane μ (the picture-plane) a figure, the 'subject' made up of planes β, γ, δ, etc., and straights b, c, d, etc., is to construct the meets and passes Thus is obtained a new figure composed of straights and points, all on μ, and called a 'cut' of the subject. If the subject is an eject of an original, the cut of the subject is an 'image' of the original. [2]

Integrity of the picture plane

A well-known phrase has accompanied many discussions of painting during the period of modernism. [3] Coined by the influential art critic Clement Greenberg in his essay called "Modernist Painting", the phrase "integrity of the picture plane" has come to denote how the flat surface of the physical painting functions in older as opposed to more recent works. That phrase is found in the following sentence in his essay:

"The Old Masters had sensed that it was necessary to preserve what is called the integrity of the picture plane: that is, to signify the enduring presence of flatness underneath and above the most vivid illusion of three-dimensional space."

Greenberg seems to be referring to the way painting relates to the picture plane in both the modern period and the "Old Master" period. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Horizon</span> Apparent curve that separates earth from sky

The horizon is the apparent curve that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This curve divides all viewing directions based on whether it intersects the relevant body's surface or not.

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

<span class="mw-page-title-main">3D projection</span> Design technique

A 3D projection is a design technique used to display a three-dimensional (3D) object on a two-dimensional (2D) surface. These projections rely on visual perspective and aspect analysis to project a complex object for viewing capability on a simpler plane.

<span class="mw-page-title-main">Vanishing point</span> Artistic concept relating to perspective

A vanishing point is a point on the image plane of a perspective rendering where the two-dimensional perspective projections of mutually parallel lines in three-dimensional space appear to converge. When the set of parallel lines is perpendicular to a picture plane, the construction is known as one-point perspective, and their vanishing point corresponds to the oculus, or "eye point", from which the image should be viewed for correct perspective geometry. Traditional linear drawings use objects with one to three sets of parallels, defining one to three vanishing points.

In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are formally similar to real-valued measures, except that their values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

<span class="mw-page-title-main">Directional statistics</span>

Directional statistics is the subdiscipline of statistics that deals with directions, axes or rotations in Rn. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold.

In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces.

von Mises distribution Probability distribution on the circle

In probability theory and directional statistics, the von Mises distribution is a continuous probability distribution on the circle. It is a close approximation to the wrapped normal distribution, which is the circular analogue of the normal distribution. A freely diffusing angle on a circle is a wrapped normally distributed random variable with an unwrapped variance that grows linearly in time. On the other hand, the von Mises distribution is the stationary distribution of a drift and diffusion process on the circle in a harmonic potential, i.e. with a preferred orientation. The von Mises distribution is the maximum entropy distribution for circular data when the real and imaginary parts of the first circular moment are specified. The von Mises distribution is a special case of the von Mises–Fisher distribution on the N-dimensional sphere.

In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields.

In physics, Fujikawa's method is a way of deriving the chiral anomaly in quantum field theory. It uses the correspondence between functional determinants and the partition function, effectively making use of the Atiyah–Singer index theorem.

<span class="mw-page-title-main">Pencil (geometry)</span> Family of geometric objects with a common property

In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane.

Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

<span class="mw-page-title-main">Wrapped normal distribution</span>

In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.

In probability theory, the family of complex normal distributions, denoted or , characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: location parameter μ, covariance matrix , and the relation matrix . The standard complex normal is the univariate distribution with , , and .

<span class="mw-page-title-main">Wrapped Cauchy distribution</span>

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation

N = 4 supersymmetric Yang–Mills (SYM) theory is a relativistic conformally invariant Lagrangian gauge theory describing fermions interacting via gauge field exchanges. In D=4 spacetime dimensions, N=4 is the maximal number of supersymmetries or supersymmetry charges.

In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically incorporated in the Green–Schwarz formalism.

References

  1. Kirsti Andersen (2007) Geometry of an Art, p. xxix, Springer, ISBN   0-387-25961-9
  2. G. B. Halsted (1906) Synthetic Projective Geometry, page 10 PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. The case against wall fodder, by Alec Clayton
  4. Clement Greenberg, "Modernist Painting"