Pinnick oxidation

Last updated
Pinnick oxidation
Named afterHarold W. Pinnick
Reaction type Organic redox reaction

The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. [1] The typical reaction conditions used today were developed by G. A. Kraus. [2] [3] H.W. Pinnick later demonstrated that these conditions could be applied to oxidize α,β-unsaturated aldehydes. [4] There exist many different reactions to oxidize aldehydes, but only a few are amenable to a broad range of functional groups. The Pinnick oxidation has proven to be both tolerant of sensitive functionalities and capable of reacting with sterically hindered groups. This reaction is especially useful for oxidizing α,β-unsaturated aldehydes, and another one of its advantages is its relatively low cost. [4] [5]

Contents

PinnickOxidationReaction Pinnick Oxidation Reaction.png
PinnickOxidationReaction

Mechanism

The proposed reaction mechanism involves chlorous acid as the active oxidant, which is formed under acidic conditions from chlorite.

ClO2 + H2PO4 HClO2 + HPO42−

First, the chlorous acid adds to the aldehyde. Then resulting structure undergoes a pericyclic fragmentation in which the aldehyde hydrogen is transferred to an oxygen on the chlorine, with the chlorine group released as hypochlorous acid (HOCl). [6]

Pinnick oxidation mechanism.png

Side reactions and scavengers

The HOCl byproduct, itself a reactive oxidizing agent, can be a problem in several ways. [6] It can destroy the NaClO2 reactant:

HOCl + 2ClO2 → 2ClO2 + Cl + OH

making it unavailable for the desired reaction. It can also cause other undesired side reactions with the organic materials. For example, HOCl can react with double bonds in the organic reactant or product via a halohydrin formation reaction.

To prevent interference from HOCl, a scavenger is usually added to the reaction to consume the HOCl as it is formed. For example, one can take advantage of the propensity of HOCl to undergo this addition reaction by adding a sacrificial alkene-containing chemical to the reaction mixture. This alternate substrate reacts with the HOCl, preventing the HOCl from undergoing reactions that interfere with the Pinnick reaction itself. 2-Methyl-2-butene is often used in this context:

2-Methyl-2-butene hypochlorous-acid.png

Resorcinol and sulfamic acid are also common scavenger reagents. [6] [7]

Hydrogen peroxide (H2O2) can be used as HOCl scavenger whose byproducts do not interfere in the Pinnick oxidation reaction:

HOCl + H2O2 → HCl + O2 + H2O

In a weakly acidic condition, fairly concentrated (35%) H2O2 solution undergoes a rapid oxidative reaction with no competitive reduction reaction of HClO2 to form HOCl.

HClO2 + H2O2 → HOCl + O2 + H2O

Chlorine dioxide reacts rapidly with H2O2 to form chlorous acid.

2ClO2 + H2O2 → 2HClO2 + O2

Also the formation of oxygen gives good indication of the progress of the reaction. DMSO has been used instead of H2O2 to oxidize reactions that do not produce great yields using only H2O2. Mostly electron rich aldehydes fall under this category. [7] (See Limitation below)

Also, solid-supported reagents such as phosphate-buffered silica gel supported by potassium permanganate and polymer-supported chlorite have been prepared and used to convert aldehydes to carboxylic acid without having to do conventional work-up procedures. The reaction involves the product to be trapped on silica gel as their potassium salts. Therefore, this procedure facilitates easy removal of neutral impurities by washing with organic solvents. [8]

Scope and limitations

The reaction is highly suited for substrates with many group functionalities. β-aryl-substituted α,β-unsaturated aldehydes works well with the reaction conditions. Triple bonds directly linked to aldehyde groups or in conjugation with other double bonds can also be subjected to the reaction. [7] [9] Hydroxides, epoxides, benzyl ethers, halides including iodides and even stannanes are quite stable in the reaction. [7] [9] [10] [11] The examples of the reactions shown below also show that the stereocenters of the α carbons remain intact while double bonds, especially trisubsituted double bonds do not undergo E/Z–isomerization in the reaction.

Scope Examples of Pinnick oxidation.png
Scope

Lower yields are obtained for reactions involving aliphatic α,β-unsaturated and more hydrophilic aldehydes. Double bonds and electron-rich aldehyde substrates can lead to chlorination as an alternate reaction. The use of DMSO in these cases gives better yield. Unprotected aromatic amines and pyrroles are not well suited for the reactions either. In particular, chiral α-aminoaldehydes do not react well due to epimerization and because amino groups can be easily transformed to their corresponding N-oxides. Standard protective group approaches, such as the use of t-BOC, are a viable solution to these problems. [12]

Thioethers are also highly susceptible to oxidation. For example, Pinnick oxidation of thioanisaldehyde gives a high yield of carboxylic acid products, but with concomitant conversion of the thioether to the sulfoxide or sulfone. [7]

Pinnick thioanisaldehyde.png

See also

Related Research Articles

Carboxylic acid organic compound

A carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is R–COOH, with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

Ketone Class of organic compounds having structure RCOR´

In chemistry, a ketone is a functional group with the structure R2C=O, where R can be a variety of carbon-containing substituents. Ketones contain a carbonyl group (a carbon-oxygen double bond). The simplest ketone is acetone (R = R' = methyl), with the formula CH3C(O)CH3. Many ketones are of great importance in industry and in biology. Examples include many sugars (ketoses), many steroids (e.g., testosterone), and the solvent acetone.

Aldehydes, which are generally created by removing a hydrogen from an alcohol, are common in organic chemistry; the most well-known is formaldehyde. As they are frequently strongly scented, many fragrances are or contain aldehydes.

The term chromic acid is usually used for a mixture made by adding concentrated sulfuric acid to a dichromate, which may contain a variety of compounds, including solid chromium trioxide. This kind of chromic acid may be used as a cleaning mixture for glass. Chromic acid may also refer to the molecular species, H2CrO4 of which the trioxide is the anhydride. Chromic acid features chromium in an oxidation state of +6 (or VI). It is a strong and corrosive oxidising agent.

Hypochlorous acid

Hypochlorous acid (HOCl or HClO) is a weak acid that forms when chlorine dissolves in water, and itself partially dissociates, forming hypochlorite, ClO. HClO and ClO are oxidizers, and the primary disinfection agents of chlorine solutions. HClO cannot be isolated from these solutions due to rapid equilibration with its precursor. Sodium hypochlorite (NaClO) and calcium hypochlorite (Ca(ClO)2), are bleaches, deodorants, and disinfectants.

Halogenation is a chemical reaction that involves the addition of one or more halogens to a compound or material. The pathway and stoichiometry of halogenation depends on the structural features and functional groups of the organic substrate, as well as on the specific halogen. Inorganic compounds such as metals also undergo halogenation.

Pyridinium chlorochromate

Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.

Dess–Martin periodinane Chemical reagent

Dess–Martin periodinane (DMP) is a chemical reagent used in the Dess–Martin oxidation, oxidizing primary alcohols to aldehydes and secondary alcohols to ketones. This periodinane has several advantages over chromium- and DMSO-based oxidants that include milder conditions, shorter reaction times, higher yields, simplified workups, high chemoselectivity, tolerance of sensitive functional groups, and a long shelf life. However, use on an industrial scale is made difficult by its cost and its potentially explosive nature. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the reagent in 1983. It is based on IBX, but due to the acetate groups attached to the central iodine atom, DMP is much more reactive than IBX and is much more soluble in organic solvents.

Sodium chlorite

Sodium chlorite (NaClO2) is a chemical compound used in the manufacturing of paper and as a disinfectant.

2-Iodoxybenzoic acid

2-Iodoxybenzoic acid (IBX) is an organic compound used in organic synthesis as an oxidizing agent. This periodinane is especially suited to oxidize alcohols to aldehydes. IBX is prepared from 2-iodobenzoic acid, potassium bromate, and sulfuric acid. Frigerio and co-workers have also demonstrated, in 1999 that potassium bromate may be replaced by commercially available Oxone. One of the main drawbacks of IBX is its limited solubility; IBX is insoluble in many common organic solvents. In the past, it was believed that IBX was shock sensitive, but it was later proposed that samples of IBX were shock sensitive due to the residual potassium bromate left from its preparation. Commercial IBX is stabilized by carboxylic acids such as benzoic acid and isophthalic acid.

In organic chemistry, the Arndt–Eistert reaction is the conversion of a carboxylic acid to its homologue. Named for the German chemists Fritz Arndt (1885–1969) and Bernd Eistert (1902–1978), the method entails treating an acid chlorides with diazomethane. It is a popular method of producing β-amino acids from α-amino acids.

Grignard reagent

A Grignard reagent or Grignard compound is a chemical compound with the generic formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH
3
and phenylmagnesium bromide (C
6
H
5
)−Mg−Br
. They are a subclass of the organomagnesium compounds.

Lead(IV) acetate

Lead(IV) acetate or lead tetraacetate is a chemical compound with chemical formula Pb(C2H3O2)4. It is a colorless solid that is soluble in nonpolar organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis.

Oppenauer oxidation, named after Rupert Viktor Oppenauer, is a gentle method for selectively oxidizing secondary alcohols to ketones.

Oxidation of primary alcohols to carboxylic acids

The oxidation of primary alcohols to carboxylic acids is an important oxidation reaction in organic chemistry.

Selenoxide elimination is a method for the chemical synthesis of alkenes from selenoxides. It is most commonly used to synthesize α,β-unsaturated carbonyl compounds from the corresponding saturated analogues. It is mechanistically related to the Cope reaction.

Diphosphorus tetraiodide

Diphosphorus tetraiodide is an orange crystalline solid with the formula P2I4. It has been used as a reducing agent in organic chemistry. It is a rare example of a compound with phosphorus in the +2 oxidation state, and can be classified as a subhalide of phosphorus. It is the most stable of the diphosphorus tetrahalides.

Lindgren oxidation is a selective method for oxidizing aldehydes to carboxylic acids. The reaction is named after Bengt O. Lindgren.

Jones oxidation

The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.

TEMPO

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl or (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl, commonly known as TEMPO, is a chemical compound with the formula (CH2)3(CMe2)2NO. This heterocyclic compound is a red-orange, sublimable solid. As a stable aminoxyl radical, it has applications in chemistry and biochemistry. TEMPO is used as a radical marker, as a structural probe for biological systems in conjunction with electron spin resonance spectroscopy, as a reagent in organic synthesis, and as a mediator in controlled radical polymerization.

References

  1. Lindgren, Bengt O.; Nilsson, Torsten; Husebye, Steinar; Mikalsen, ØYvind; Leander, Kurt; Swahn, Carl-Gunnar (1973). "Preparation of Carboxylic Acids from Aldehydes (Including Hydroxylated Benzaldehydes) by Oxidation with Chlorite". Acta Chem. Scand. 27: 888–890. doi: 10.3891/acta.chem.scand.27-0888 .
  2. George A. Kraus; Bruce Roth (1980). "Synthetic studies toward verrucarol. 2. Synthesis of the AB ring system". J. Org. Chem. 45 (24): 4825–4830. doi:10.1021/jo01312a004.
  3. George A. Kraus; Michael J. Taschner (1980). "Model studies for the synthesis of quassinoids. 1. Construction of the BCE ring system". J. Org. Chem. 45 (6): 1175–1176. doi:10.1021/jo01294a058.
  4. 1 2 Bal, B. S.; Childers, W.E.; Pinnick, H.W. (1981). "Oxidation of α,β-Unsaturated Aldehydes". Tetrahedron . 37 (11): 2091–2096. doi:10.1016/S0040-4020(01)97963-3.
  5. Mundy, B. J.; Ellerd, Michael G.; Favaloro, Frank G. (2005). "Pinnick Oxidation". Name Reactions and Reagents in Organic Synthesis. John Wiley & Sons. p. 518. ISBN   978-0-471-22854-7.
  6. 1 2 3 Kürti, László; Czakó, Barbara (2005). "Pinnick Oxidation". Strategic applications of named reactions in organic synthesis: background and detailed mechanisms. Elsevier. pp. 354–356. ISBN   9780124297852.
  7. 1 2 3 4 5 Dalcanale, E; Montanari, F (1986). "Selective Oxidation of Aldehydes to Carboxylic Acids with Sodium Chlorite-Hydrogen Peroxide". J. Org. Chem. 51 (4): 567–569. doi:10.1021/jo00354a037.
  8. Takemoto, T.; Yasuda, K.; Ley, S.V. (2001). "Solid-Supported Reagents for the Oxidation of Aldehydes to Carboxylic Acids". Synlett . 2001 (10): 1555–1556. doi:10.1055/s-2001-17448.
  9. 1 2 Raach, A.; Reiser, O. (2000). "Sodium Chlorite-Hydrogen Peroxide, a Mild and Selective Reagent for the Oxidation of Aldehydes to Carboxylic Acids". J. Prakt. Chem. 342 (6): 605–608. doi:10.1002/1521-3897(200006)342:6<605::aid-prac605>3.0.co;2-i.
  10. Ishihara, J.; Hagihara, K.; Chiba, H.; Ito, K.; Yanagisawa, Y.; Totani, K; Tadano, K. (2000). "Synthetic studies of viridenomycin. Construction of the cyclopentene carboxylic acid part". Tetrahedron Lett. 41 (11): 1771–1774. doi:10.1016/S0040-4039(00)00013-7.
  11. Kuramochi, K.; Nagata, S.; Itaya, H.; Takao, H.; Kobayashi, S. (1999). "Convergent Total Synthesis of epolactaene: application of bridgehead oxiranyl anion strategy". Tetrahedron Lett. 40 (41): 7371–7374. doi:10.1016/S0040-4039(99)01512-9.
  12. Dehoux, C.; Fontaine, E.; Escudier, J.; Baltas, M.; Gorrichon, L. (1998). "Total Synthesis of Thymidine 2-Deoxypolyoxine C Analogue". J. Org. Chem. 63 (8): 2601–2608. doi:10.1021/jo972116s. PMID   11672125.