Pogo oscillation

Last updated

Pogo oscillation is a self-excited vibration in liquid-propellant rocket engines caused by combustion instability. [1] The unstable combustion results in variations of engine thrust, causing variations of acceleration on the vehicle's flexible structure, which in turn cause variations in propellant pressure and flow rate, closing the self-excitation cycle. The name is a metaphor comparing the longitudinal vibration to the bouncing of a pogo stick. Pogo oscillation places stress on the frame of the vehicle, which in severe cases can be dangerous. [1]

Contents

Origin

NASA Associate Administrator for Manned Space Flight George Mueller explained Apollo 6's pogo oscillation to a congressional hearing:

Pogo arises fundamentally because you have thrust fluctuations in the engines. Those are normal characteristics of engines. All engines have what you might call noise in their output because the combustion is not quite uniform, so you have this fluctuation in thrust of the first stage as a normal characteristic of all engine burning.

Now, in turn, the engine is fed through a pipe that takes the fuel out of the tanks and feeds it into the engine. That pipe's length is something like an organ pipe so it has a certain resonance frequency of its own and it really turns out that it will oscillate just like an organ pipe does.

The structure of the vehicle is much like a tuning fork, so if you strike it right, it will oscillate up and down longitudinally. In a gross sense it is the interaction between the various frequencies that causes the vehicle to oscillate. [2]

In general, pogo oscillation occurs when a surge in combustion chamber pressure increases back pressure against the fuel coming into the engine. This reduces fuel flow and thus chamber pressure. The reduced chamber pressure in turn reduces back pressure at the pump, causing more fuel to come in and repeating the cycle. In this way, a rocket engine experiencing pogo oscillations is conceptually operating somewhat like a pulsejet or pulse detonation engine. If the pulse cycle happens to match a resonance frequency of the rocket then dangerous oscillations can occur through positive feedback, which can, in extreme cases, tear the vehicle apart. Other situations that can induce fuel pressure fluctuations include flexing of fuel pipes. [3] [4]

Pogo oscillation plagued the Titan II first stage during its development, which delayed man-rating the rocket for the Gemini program. The Saturn V first stage (S-IC) experienced severe pogo oscillation on the flight of Apollo 6, which damaged the S-II and S-IVB stages above and likely would have triggered an abort if the flight had carried a crew. The second stage (S-II) had less intense pogo on other flights. The oscillations during Apollo 13's ascent caused the center engine to shut down about two minutes earlier than planned. The loss in thrust was compensated by longer burns from the second and third stages.

Hazard

If the oscillation is left unchecked, failures can result. One case occurred in the middle J-2 engine of the second stage, S-II, of the Apollo 13 lunar mission in 1970. In this case, the engine shut down before the oscillations could cause damage to the vehicle. [1] Later events in this mission (an oxygen tank exploded two days later) overshadowed the pogo problem. Pogo also had been experienced in the S-IC first stage of the uncrewed Apollo 6 test flight in 1968. [5] One of the Soviet Union's N1-L3 rocket test flights suffered pogo oscillations in the first stage on February 21, 1969. The launch vehicle reached initial engine cutoff, but exploded 107 seconds after liftoff and disintegrated. [6] There are other cases during uncrewed launches in the 1950s and 1960s where the pogo effect caused catastrophic launch failures, such as the first Soviet spacecraft to the moon Luna E-1 No.1 and Luna E-1 No.2 in September and October 1958. [7] :440–446

Modern vibration analysis methods can account for the pogo oscillation to ensure that it is far away from the vehicle's resonant frequencies. Suppression methods include damping mechanisms or bellows in propellant lines. The Space Shuttle main engines each had a damper in the LOX line, [4] but not in the hydrogen fuel line.

See also

Related Research Articles

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

<span class="mw-page-title-main">Soyuz (rocket family)</span> Russian and Soviet rocket family

Soyuz is a family of expendable Russian and Soviet carrier rockets developed by OKB-1 and manufactured by Progress Rocket Space Centre in Samara, Russia. With over 2,000 flights since its debut in 1966, the Soyuz is the rocket with the most launches in the history of spaceflight.

<span class="mw-page-title-main">Apollo 6</span> Second test flight of the Apollo Saturn V rocket

Apollo 6, also known as AS-502, was the third and final uncrewed flight in the United States' Apollo Program and the second test of the Saturn V launch vehicle. It qualified the Saturn V for use on crewed missions, and it was used beginning with Apollo 8 in December 1968.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly used by ballistic missiles and rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

<span class="mw-page-title-main">Gemini 1</span> First Gemini program spacelaunch

Gemini 1 was the first mission in NASA's Gemini program. An uncrewed test flight of the Gemini spacecraft, its main objectives were to test the structural integrity of the new spacecraft and modified Titan II launch vehicle. It was also the first test of the new tracking and communication systems for the Gemini program and provided training for the ground support crews for the first crewed missions.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.

<span class="mw-page-title-main">Saturn IB</span> American rocket used in the Apollo program during the 1960s and 70s

The Saturn IB(also known as the uprated Saturn I) was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage, with the S-IVB. The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.

<span class="mw-page-title-main">RS-25</span> Space Shuttle and SLS main engine

The Aerojet Rocketdyne RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is used on the Space Launch System (SLS).

<span class="mw-page-title-main">N1 (rocket)</span> Soviet super heavy-lift launch vehicle

The N1/L3 was a super heavy-lift launch vehicle intended to deliver payloads beyond low Earth orbit. The N1 was the Soviet counterpart to the US Saturn V and was intended to enable crewed travel to the Moon and beyond, with studies beginning as early as 1959. Its first stage, Block A, was the most powerful rocket stage ever flown for over 50 years, generating 45.4 MN of thrust. However, each of the four attempts to launch an N1 failed in flight, with the second attempt resulting in the vehicle crashing back onto its launch pad shortly after liftoff. Adverse characteristics of the large cluster of thirty engines and its complex fuel and oxidizer feeder systems were not revealed earlier in development because static test firings had not been conducted.

<span class="mw-page-title-main">Rocketdyne F-1</span> Rocket engine used on the Saturn V rocket

The F-1, commonly known as Rocketdyne F-1, is a rocket engine developed by Rocketdyne. This engine uses a gas-generator cycle developed in the United States in the late 1950s and was used in the Saturn V rocket in the 1960s and early 1970s. Five F-1 engines were used in the S-IC first stage of each Saturn V, which served as the main launch vehicle of the Apollo program. The F-1 remains the most powerful single combustion chamber liquid-propellant rocket engine ever developed.

<span class="mw-page-title-main">Rocketdyne J-2</span> Rocket engine

The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.

<span class="mw-page-title-main">LGM-25C Titan II</span> US ICBM, in service from 1962 to 1987

The Titan II was an intercontinental ballistic missile (ICBM) developed by the Glenn L. Martin Company from the earlier Titan I missile. Titan II was originally designed and used as an ICBM, but was later adapted as a medium-lift space launch vehicle to carry payloads to Earth orbit for the United States Air Force (USAF), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA). Those payloads included the USAF Defense Meteorological Satellite Program (DMSP), NOAA weather satellites, and NASA's Gemini crewed space capsules. The modified Titan II SLVs were launched from Vandenberg Air Force Base, California, up until 2003.

The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.

<span class="mw-page-title-main">Pressure-fed engine</span> Rocket engine operation method

The pressure-fed engine is a class of rocket engine designs. A separate gas supply, usually helium, pressurizes the propellant tanks to force fuel and oxidizer to the combustion chamber. To maintain adequate flow, the tank pressures must exceed the combustion chamber pressure.

<span class="mw-page-title-main">Ares I</span> Canceled NASA rocket key to the Constellation program

Ares I was the crew launch vehicle that was being developed by NASA as part of the Constellation program. The name "Ares" refers to the Greek deity Ares, who is identified with the Roman god Mars. Ares I was originally known as the "Crew Launch Vehicle" (CLV).

<span class="mw-page-title-main">Titan II GLV</span> Expendable launch system

The Titan II GLV or Gemini-Titan II was an American expendable launch system derived from the Titan II missile, which was used to launch twelve Gemini missions for NASA between 1964 and 1966. Two uncrewed launches followed by ten crewed ones were conducted from Launch Complex 19 at the Cape Canaveral Air Force Station, starting with Gemini 1 on April 8, 1964.

<span class="mw-page-title-main">Cryogenic rocket engine</span> Type of rocket engine which uses liquid fuel stored at very low temperatures

A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel and oxidizer; that is, both its fuel and oxidizer are gases which have been liquefied and are stored at very low temperatures. These highly efficient engines were first flown on the US Atlas-Centaur and were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.

<span class="mw-page-title-main">Atlas LV-3B</span> American space launch vehicle

The Atlas LV-3B, Atlas D Mercury Launch Vehicle or Mercury-Atlas Launch Vehicle, was a human-rated expendable launch system used as part of the United States Project Mercury to send astronauts into low Earth orbit. Manufactured by Convair, it was derived from the SM-65D Atlas missile, and was a member of the Atlas family of rockets. With the Atlas having been originally designed as a weapon system, testing and design changes were made to the missile to make it a safe and reliable launch vehicle. After the changes were made and approved, the US launched the LV-3B nine times, four of which had crewed Mercury spacecraft.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

The TR-201 or TR201 is a hypergolic pressure-fed rocket engine used to propel the upper stage of the Delta rocket, referred to as Delta-P, from 1972 to 1988. The rocket engine uses Aerozine 50 as fuel, and N
2
O
4
as oxidizer. It was developed in the early 1970s by TRW as a derivative of the lunar module descent engine (LMDE). This engine used a pintle injector first invented by Gerard W. Elverum Jr. and developed by TRW in the late 1950s and received US Patent in 1972. This injector technology and design is also used on SpaceX Merlin engines.

References

  1. 1 2 3 Tom Irvine (October 2008). "Apollo 13 Pogo Oscillation" (PDF-0.96 Mb). Vibrationdata Newsletter. pp. 2–6. Retrieved June 18, 2009.
  2. Benson, Charles D.; Faherty, William Barnaby (1978). "Two engines out but still running". Moonport: A History of Apollo Launch Facilities and Operations. NASA. NASA SP-4204. Archived from the original on January 23, 2008. Retrieved September 27, 2021. Ch. 20-3.
  3. Robert Stengel. "Launch Vehicle Design: Configurations and Structures" (PDF-3.0 Mb). Princeton University . Retrieved June 18, 2009.
  4. 1 2 Fenwick, Jim (Spring 1992). "Pogo". Threshold. Pratt & Whitney Rocketdyne. Archived from the original on January 13, 2009. Retrieved September 11, 2009.{{cite journal}}: CS1 maint: unfit URL (link)
  5. Curtis E. Larsen. "NASA Experience with Pogo in Human Spaceflight Vehicles" (PDF). NASA. Retrieved June 26, 2012.
  6. "Die russische Mondrakete N-1 (The Russian moon rocket N-1)". www.bernd-leitenberger.de (in German). Retrieved June 17, 2014.
  7. Boris Chertok (2006). "Rockets and People, Volume 2: Creating a Rocket Industry" (PDF). NASA. Retrieved February 18, 2021.