Pollicipes polymerus

Last updated

Pollicipes polymerus
Pollicipes polymerus 3.jpg
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Crustacea
Class: Thecostraca
Subclass: Cirripedia
Order: Pollicipedomorpha
Family: Pollicipedidae
Genus: Pollicipes
Species:
P. polymerus
Binomial name
Pollicipes polymerus
(Sowerby, 1883) [1]
Synonyms [2]
  • Mitella polymerus

Pollicipes polymerus, commonly known as the gooseneck barnacle or leaf barnacle, is a species of stalked barnacle. It is found, often in great numbers, on rocky shores on the Pacific coasts of North America.

Contents

Classification

Barnacles are classified with shrimps, crabs, isopods and amphipods in the subphylum Crustacea. They are included in the class Maxillopoda, though this class does not appear to be a monophyletic grouping. [3] They are included in the infraclass Cirripedia, the barnacles, members of which are sessile suspension feeders with two active swimming larval stages, the nauplius and the cyprid. The order Pedunculata includes barnacles attached to the substrate by stalks, the goose barnacles. The attachment is made by the cementing of the antennules of the cyprid larvae to the substrate and the elongation of that region into a stalk. Pedunculata is not itself a single monophyletic group but forms a transitional series of lineages moving towards the sessile acorn barnacles. [4] Pollicipes polymerus is included in the family Pollicipedidae.

Description

Pollicipes polymerus is attached to rocks or other objects by a strong, rubbery stalk, the peduncle, which is up to 10 centimetres (4 in) long. It has a muscular interior and the leathery surface is covered in bands of minute spiny scales on short stalks. The capitulum, at the end of the peduncle, is up to 5 centimetres (2 in) long and contains the rest of the body including all the limbs and other appendages except the first pair of antennae. [5] The outside of the capitulum bears five strengthening calcareous plates corresponding with the plates that protect an acorn barnacle. The largest of these is the carina, on the morphologically dorsal side of the capitulum, with a pair of smaller scuta and terga on either side below. Further calcification occurs from other centres on the capitulum with the formation of many small scales. The thoracic crustacean appendages are modified into feather-like cirri. They project through the aperture at the end of the capitulum and are used for feeding. [4]

Distribution and habitat

Pollicipes polymerus is found in the north eastern Pacific Ocean, its range extending from southern Alaska to Baja California. It occurs on rocky coasts in the intertidal zone and favours exposed areas where there is much wave action. It tends to occur in closely associated groups and is often abundant. [6]

Reproduction

Pollicipes polymerus is a hermaphrodite. Reproduction takes place during the summer and there may be several broods per year. The ovaries are in the upper part of the peduncle and liberate from 104,000 to 240,000 eggs at a time into the mantle cavity. Here they stick together to form egg masses. The numerous small testes lie alongside the gut. Sperm from these is passed along the extensible penis into the mantle cavity of an adjoining individual where fertilisation takes place. Self-fertilisation does not seem to occur and any individual that is more than 20 cm (8 in) from its nearest neighbour is effectively sterile. [7] The eggs are brooded for 3 to 4 weeks until they hatch into nauplius larvae and are liberated into the sea. [8] There they become planktonic and feed on phytoplankton. They grow and undergo 6 moults in about 40 days before becoming non-feeding cyprid larvae. These search out suitable places to settle where they undergo metamorphosis and attach themselves permanently to the substrate. They do this by secreting a strong adhesive substance from glands on the antennules. Settlement is stimulated by the presence of peduncles of other gooseneck barnacles, and may take place on the peduncles themselves. [7]

Ecology

Pollicipes polymerus is an omnivore. It feeds by extending its cirri through the aperture at the end of the capitulum and unfurling them. The posterior three pairs are biramous and form a net to trap particles. They are held at a suitable angle to intercept moving water and are periodically withdrawn into the capitulum with any food items that have been trapped. Here particles are scraped off by the other three, shorter pairs of cirri which have overlapping setae (bristles). The particles are then transported to the mouth where they are manipulated and sorted into edible and inedible items by the maxillae, mandibles and palps. This may be done with the help of chemoreceptors found on the appendages and near the mouth. Examination of the animal's gut contents show that it feeds on copepods, amphipods, barnacle larvae, small clams, polychaete worms and hydrozoans as well as detritus and algae. [8] Predators on gooseneck barnacles include the glaucous-winged gull (Larus glaucescens), the black oystercatcher (Haematopus bachmani), the ochre sea star (Pisaster ochraceus) and the six-rayed star (Leptasterias hexactis). [6] [8]

A research study undertaken by Robert T. Paine in Makah Bay, Washington State in 1966 [9] showed the importance of predators in maintaining a biodiverse community. Paine excluded the ochre sea star from an area of seabed where gooseneck barnacles and sea mussels ( Mytilus californianus ) predominated and found that the number of invertebrate species associated with them fell from fifteen to eight. Paine proposed the hypothesis that "Local species diversity is directly related to the efficiency with which predators prevent the monopolization of the major environmental requisites by one species". [10]

The distribution of both gooseneck barnacles and sea mussels is quite patchy. In an effort to understand this better, another study, undertaken by Wootton in 1994, excluded birds from an area where these two species were found on Tatoosh Island, Washington. In a carefully designed series of experiments he recorded the direct and indirect results on the numbers of goose barnacles, sea mussels, acorn barnacles, starfish and predatory whelks ( Nucella spp.) present in the area. His results demonstrated the important part that predation by birds can play in the dynamics of gooseneck barnacle populations. [8]

Gooseneck barnacles compete with a number of other organisms in a complex struggle for survival in the limited available space in their rocky intertidal habitat. The first colonisers of bare rock are usually annual algae, soon to be followed by perennial species including coralline algae. Gooseneck barnacles, sea mussels and several species of acorn barnacles soon follow. Further competition is provided by sea palms, the large holdfasts of which may smother or squeeze out the molluscs and barnacles. Sea palms may settle on the mussels and may be carried away in storms, taking the mussels with them. Gooseneck barnacles may limit the colonisation of mussel recruits by feeding on their larvae. In areas where gooseneck barnacles predominate they may dominate until some are swept away in storms and allow in other species. In the long term, the mussels usually come to dominate as their byssal threads are able to overgrow all the other sessile organisms. [11]

Related Research Articles

Barnacle Infraclass of crustaceans

A barnacle is a type of arthropod constituting the subclass Cirripedia in the subphylum Crustacea, and is hence related to crabs and lobsters. Barnacles are exclusively marine, and tend to live in shallow and tidal waters, typically in erosive settings. They are sessile (nonmobile) and most are suspension feeders, but those in infraclass Rhizocephala are highly specialized parasites on crustaceans. They have four nektonic larval stages. Around 1,000 barnacle species are currently known. The name "Cirripedia" is Latin, meaning "curl-footed". The study of barnacles is called cirripedology.

Goose barnacle Type of barnacles

Goose barnacles, also called stalked barnacles or gooseneck barnacles, are filter-feeding crustaceans that live attached to hard surfaces of rocks and flotsam in the ocean intertidal zone. Goose barnacles formerly made up the taxonomic order Pedunculata, but research has resulted in the classification of stalked barnacles within multiple orders of the infraclass Thoracica.

Rhizocephala Superorder of barnacles

Rhizocephala are derived barnacles that parasitise mostly decapod crustaceans, but can also infest Peracarida, mantis shrimps and thoracican barnacles, and are found from the deep ocean to freshwater. Together with their sister groups Thoracica and Acrothoracica, they make up the subclass Cirripedia. Their body plan is uniquely reduced in an extreme adaptation to their parasitic lifestyle, and makes their relationship to other barnacles unrecognisable in the adult form. The name Rhizocephala derives from the Ancient Greek roots ῥίζα and κεφαλή, describing the adult female, which mostly consists of a network of thread-like extensions penetrating the body of the host.

<i>Anelasma</i> Species of parasitic barnacles that attack sharks

Anelasma is a monotypic genus of goose barnacles that live as parasites on various shark hosts.

Acorn barnacle Index of animals with the same common name

Acorn barnacle and acorn shell are vernacular names for certain types of stalkless barnacles, generally excluding stalked or gooseneck barnacles. As adults they are typically cone-shaped, symmetrical, and attached to rocks or other fixed objects in the ocean. Members of the barnacle order Balanomorpha are often called acorn barnacles.

<i>Semibalanus balanoides</i> Species of barnacle

Semibalanus balanoides is a common and widespread boreo-arctic species of acorn barnacle. It is common on rocks and other substrates in the intertidal zone of north-western Europe and both coasts of North America.

Whale barnacle Barnacles that attach to whales

Whale barnacles are species of acorn barnacle that belong to the family Coronulidae. They typically attach to baleen whales, and sometimes settle on toothed whales. The whale barnacles diverged from the turtle barnacles about three million years ago.

<i>Austromegabalanus psittacus</i> Species of barnacle

Austromegabalanus psittacus, the giant barnacle or picoroco as it is known in Spanish, is a species of large barnacle native to the coasts of southern Peru, all of Chile and southern Argentina. It inhabits the littoral and intertidal zones of rocky shores and normally grows up to 30 centimetres (12 in) tall with a mineralized shell composed of calcite. The picoroco barnacle is used in Chilean cuisine and is one of the ingredients in curanto.

<i>Chthamalus stellatus</i> Species of barnacle

Chthamalus stellatus, common name Poli's stellate barnacle, is a species of acorn barnacle common on rocky shores in South West England, Ireland, and Southern Europe. It is named after Giuseppe Saverio Poli.

<i>Pollicipes pollicipes</i> Species of barnacle

Pollicipes pollicipes, known as the goose neck barnacle, goose barnacle or leaf barnacle is a species of goose barnacle, also well known under the taxonomic synonym Pollicipes cornucopia. It is closely related to Pollicipes polymerus, a species with the same common names, but found on the Pacific coast of North America, and to Pollicipes elegans a species from the coast of Chile. It is found on rocky shores in the north-east Atlantic Ocean and is prized as a delicacy, especially in the Iberian Peninsula.

<i>Lottia digitalis</i> Species of gastropod

Lottia digitalis common name the "fingered limpet" or ribbed limpet, is a species of sea snail, a true limpet, a marine gastropod mollusk in the family Lottiidae. These limpets are usually found on the surface of rocks in the high intertidal region on the coastal fringes of the north east Pacific Ocean.

<i>Amphibalanus improvisus</i> Species of barnacle

Amphibalanus improvisus, the bay barnacle, is a species of acorn barnacle in the family Balanidae.

<i>Lepas anserifera</i> Species of barnacle

Lepas anserifera is a species of goose barnacle or stalked barnacle in the family Lepadidae. It lives attached to floating timber, ships' hulls and various sorts of flotsam.

<i>Lepas anatifera</i> Species of barnacle

Lepas anatifera, commonly known as the pelagic gooseneck barnacle or smooth gooseneck barnacle, is a species of barnacle in the family Lepadidae. These barnacles are found, often in large numbers, attached by their flexible stalks to floating timber, the hulls of ships, piers, pilings, seaweed, and various sorts of flotsam.

<i>Capitulum mitella</i> Species of barnacle

Capitulum is a monotypic genus of sessile marine stalked barnacles. Capitulum mitella is the only species in the genus. It is commonly known as the Japanese goose barnacle or kamenote and is found on rocky shores in the Indo-Pacific region.

<i>Catomerus</i> Genus of barnacles

Catomerus is a monotypic genus of intertidal/shallow water acorn barnacle that is found in warm temperate waters of Australia. The genus and species is very easily identified by whorls of small plates surrounding the base of the primary shell wall; no other shoreline barnacle species in the Southern Hemisphere has that feature. This species is considered to be a relic, as these plates are found only in primitive living lineages of acorn barnacles or in older fossil species. The fact that this is an intertidal species is unusual, because living primitive relic species are often found in more isolated habitats such as deep ocean basins and abyssal hydrothermal vents.

Vulcanolepas osheai, commonly referred to as O'Shea's vent barnacle, is a stalked barnacle of the family Neolepadidae. This species is endemic to New Zealand.

<i>Conchoderma virgatum</i> Species of crustacean

Conchoderma virgatum is a species of goose barnacle in the family Lepadidae. It is a pelagic species found in open water in most of the world's oceans attached to drifting objects or marine organisms.

<i>Clistosaccus</i> Genus of barnacles

Clistosaccus is a genus of barnacles which are parasitic on hermit crabs. It is a monotypic genus, and the single species is Clistosaccus paguri, which is found in the northern Atlantic Ocean and the northern Pacific Ocean.

<i>Tetraclita rubescens</i> Species of crustacean

Tetraclita rubescens, the pink volcano barnacle, is a species of sessile barnacle in the family Tetraclitidae.

References

  1. Benny K. K. Chan (2010). "Pollicipes polymerus (Sowerby, 1883)". WoRMS. World Register of Marine Species . Retrieved February 1, 2012.
  2. Pollicipes polymerus (Goose Neck Barnacle) ZipcodeZoo. Retrieved February 2, 2012.
  3. Joel W. Martin & George E. Davis (2001). An Updated Classification of the Recent Crustacea (PDF). Natural History Museum of Los Angeles County. pp. 1–132.
  4. 1 2 Frederick R. Schram. "Cirripedia". Access Science. Retrieved February 2, 2012.
  5. Pollicipes polymerus Archived 2013-01-31 at the Wayback Machine Race Rocks. Retrieved February 1, 2012.
  6. 1 2 Melissa McFadden, Hans Helmstetler & Dave Cowles (2007). "Mitella polymerus (Sowerby, 1833); Goose Neck Barnacle, Leaf Barnacle". Invertebrates of the Salish Sea. Walla Walla University. Archived from the original on February 13, 2012. Retrieved February 2, 2012.
  7. 1 2 Galen H. Hilgard (1960). "A study of reproduction in the intertidal barnacle, Mitella polymerus, in Monterey Bay, California" (PDF). The Biological Bulletin . 119 (2): 169–188.
  8. 1 2 3 4 "About goose barnacles". A Snail's Odyssey. Retrieved February 1, 2012.
  9. Robert T. Paine (1966). "Food web complexity and species diversity" (PDF). The American Naturalist . 100 (910): 65–75. doi:10.1086/282400. JSTOR   2459379. Archived from the original (PDF) on 2010-06-05. Retrieved 2012-02-14.
  10. Michael Begon, Martin Mortimer & David J. Thompson (1996). "Beyond population ecology". Population Ecology: a Unified Study of Animals and Plants (3rd ed.). John Wiley & Sons. p. 217. ISBN   978-0-632-03478-9.
  11. Paul K. Dayton (1971). "Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community". Ecological Monographs . 41 (4): 351–389. doi:10.2307/1948498. JSTOR   1948498.