Powered lift

Last updated
Bell Boeing V-22 Osprey flown by the U.S. Marines MV-22 mcas Miramar 2014.JPG
Bell Boeing V-22 Osprey flown by the U.S. Marines
A Spanish EAV-8B Harrier II+ Spanish EAV-8B Harrier II+ "Cobra" (27448607244) (cropped).jpg
A Spanish EAV-8B Harrier II+

A powered lift aircraft takes off and lands vertically under engine power but uses a fixed wing for horizontal flight. Like helicopters, these aircraft do not need a long runway to take off and land, but they have a speed and performance similar to standard fixed-wing aircraft in combat or other situations.

Contents

Some powered-lift aircraft, like the Bell Boeing V-22 Osprey used by the United States Marines, use a tiltrotor or tiltwing. These are called a convertiplane. Others like the British Harrier jump jet use thrust vectoring or other direct thrust techniques.

The first powered-lift ratings on a civilian pilot certificate were issued by the Federal Aviation Administration (FAA) on 21 August 1997 to pilots of Bell Helicopter, Boeing, and the United States Marine Corps. [1]

Definition

Powered lift and thrust forces of various aircraft LiftThrust1.PNG
Powered lift and thrust forces of various aircraft

The term is an aircraft classification used by the International Civil Aviation Organization (ICAO) and the United States' FAA:

Powered-lift. A heavier-than-air aircraft capable of vertical take-off, vertical landing, and low-speed flight, which depends principally on engine-driven lift devices or engine thrust for the lift during these flight regimes and on non-rotating aerofoil(s) for lift during horizontal flight.

ICAO Annex I, Chapter 1.1 Definitions

Convertiplane

A convertiplane uses rotor power for vertical takeoff and landing (VTOL) and converts to fixed-wing lift for normal flight.

In tiltrotor and tiltwing designs such as the Bell Boeing V-22 Osprey, the rotor swings forward to act as a propeller in forward flight. Some designs have a ducted fan design, in which the propeller is surrounded by a large ring-shaped duct to reduce tip losses.

Tiltrotor

An USAF CV-22 in flight CV-22 Osprey in flight.jpg
An USAF CV-22 in flight

The powered rotors of a tiltrotor (sometimes called proprotor ) are mounted on rotating shafts or nacelles at the end of a fixed wing, and used for both lift and propulsion. For vertical flight, the rotors are angled to provide thrust upwards, lifting the way a helicopter rotor does. As the aircraft gains speed, the rotors progressively rotate or tilt forward, with the rotors eventually becoming perpendicular to the fuselage of the aircraft, similar to a propeller. In this mode, the wing provides the lift and the rotor provides thrust. The wing's greater efficiency helps the tiltrotor achieve higher speeds than helicopters.

The Osprey by Bell Helicopter and Boeing is a twin-engine tiltrotor design that has two turbine engines each driving three-blade rotors. The rotors function similar to a helicopter in vertical flight, and similar to an airplane in forward flight. It first flew on 19 March 1989. The AgustaWestland AW609 (formerly Bell/Agusta BA609) tiltrotor is civilian aircraft based on the V-22 Osprey. The aircraft can take off and land vertically with 2 crew and 9 passengers. The aircraft is expected to be certified in the mid-2020s.

Tiltwing

The tiltwing is similar to the tiltrotor, except that the rotor mountings are fixed to the wing and the whole assembly tilts between vertical and horizontal positions.

The Vertol VZ-2 was a research aircraft developed in the late 1950s. Unlike other tiltwing aircraft, Vertol designed the VZ-2 using rotors in place of propellers. [2] On 23 July 1958, the aircraft made its first full transition from vertical flight to horizontal flight. By the time the aircraft was retired in 1965, the VZ-2 had accomplished 450 flights, including 34 full transitions.

Rotor wing

A rotor wing aircraft has been attempted but is not in wide use. The Boeing X-50 Dragonfly had a two-bladed rotor driven by the engine for takeoff. In horizontal flight the rotor stopped to act like a wing. Fixed canard and tail surfaces provided lift during transition, and also stability and control in forward flight. Both examples of this aircraft were destroyed in crashes. The Sikorsky X-Wing had a four-bladed rotor utilizing compressed air to control lift over the surfaces while operating as a helicopter. At higher forward speeds, the rotor would be stopped to continue providing lift as tandem wings in an X configuration. The program was canceled before the aircraft had attempted any flights with the rotor system.

Tail-sitter

A Tail-sitter is an aircraft that rests on the ground pointing vertically upwards, so that it rests on its tail. It takes off and lands vertically, tail down. The whole aircraft then tilts forward horizontally for normal flight. No type has ever gone into production, although a number of experimental variants have been flown, using both proprotor and jet thrust. Some have achieved successful transition between flight modes, as the turboprop-powered Convair XFY Pogo did in November 1954. [3]

The coleopter type has an annular wing forming a duct around a lift rotor. The transition to forward flight has never been achieved, although the SNECMA Coléoptère took off, hovered and landed vertically, solely on pure jet thrust.

The German Focke-Wulf Fw Triebflügel was a design studied during the Second World War. It used pulse jets to power a rotor that rotated about the fuselage axis behind the cockpit. Similar to a coleopter fixed-wing aircraft, the Triebflügel was intended to take off and land on its tail, rotating on the pitch axis after takeoff and acceleration for forward flight. The design was never built beyond model wind tunnel testing.

Direct thrust

Vectored thrust

The Harrier family of military VSTOL jet aircraft uses thrust vectoring. These aircraft are capable of vertical/short takeoff and landing (V/STOL). They are the only truly successful design of this type from the many that arose in the 1960s. These aircraft are capable of operating from small spaces, such as fields, roads, and aviation-capable ships. The Lockheed F-35B Lightning II is proposed as the next military VSTOL/STOVL design, to replace the Harrier.

Lift jets

A lift jet is a lightweight jet engine used to provide vertical thrust for VTOL operation, and is then shut down in forward flight. Some VTOL designs have used both vectored thrust from the main engine together with auxiliary lift jets.

Lift fans

A lift fan configuration is where the lifting fans are located in large holes in an otherwise conventional fixed wing or fuselage. It is used for V/STOL operation. The aircraft takes off using the fans to provide lift, then transitions to more convention fixed-wing forward flight. Several experimental craft have been flown, but only the F-35 Lightning II entered into production.

Additional examples

See also

Notes

  1. "Osprey Pilots Receive First FAA Powered Lift Ratings", www.boeing.com, 21 August 1997. 1999 Archive
  2. "VTOL Design Problems." Flight. periodical. 18 October 1957. Retrieved on 22 October 2009.
  3. "Convair XFY." Flight, 12 November 1954, p. 696.

Related Research Articles

<span class="mw-page-title-main">Aircraft</span> Vehicle or machine that is able to fly by gaining support from the air

An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or the dynamic lift of an airfoil, or, in a few cases, direct downward thrust from its engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, paramotors, and hot air balloons.

A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.

<span class="mw-page-title-main">Tiltrotor</span> Aircraft type

A tiltrotor is an aircraft that generates lift and propulsion by way of one or more powered rotors mounted on rotating shafts or nacelles usually at the ends of a fixed wing. Almost all tiltrotors use a transverse rotor design, with a few exceptions that use other multirotor layouts.

<span class="mw-page-title-main">Takeoff</span> Phase of flight in which a vehicle leaves the land or water surface

Takeoff is the phase of flight in which an aerospace vehicle leaves the ground and becomes airborne. For aircraft traveling vertically, this is known as liftoff.

<span class="mw-page-title-main">V/STOL</span> Aircraft takeoff and landing class

A vertical and/or short take-off and landing (V/STOL) aircraft is an airplane able to take-off or land vertically or on short runways. Vertical takeoff and landing (VTOL) aircraft are a subset of V/STOL craft that do not require runways at all. Generally, a V/STOL aircraft needs to be able to hover. Helicopters are not considered under the V/STOL classification as the classification is only used for aeroplanes, aircraft that achieve lift (force) in forward flight by planing the air, thereby achieving speed and fuel efficiency that is typically greater than the capability of helicopters.

<span class="mw-page-title-main">Bell XV-15</span> American experimental tiltrotor aircraft

The Bell XV-15 is an American tiltrotor VTOL aircraft. It was the second successful experimental tiltrotor aircraft and the first to demonstrate the concept's high speed performance relative to conventional helicopters.

<span class="mw-page-title-main">Tiltwing</span>

A tiltwing aircraft features a wing that is horizontal for conventional forward flight and rotates up for vertical takeoff and landing. It is similar to the tiltrotor design where only the propeller and engine rotate. Tiltwing aircraft are typically fully capable of VTOL operations.

<span class="mw-page-title-main">Tail-sitter</span> Type of VTOL aircraft

A tail-sitter, or tailsitter, is a type of VTOL aircraft that takes off and lands on its tail, then tilts horizontally for forward flight.

<span class="mw-page-title-main">Curtiss-Wright X-19</span> Experimental VTOL tiltrotor quadcopter airplane

The Curtiss-Wright X-19, company designation Model 200, was an American experimental tiltrotor aircraft of the early 1960s. It was noteworthy for being the last aircraft of any kind manufactured by Curtiss-Wright.

<span class="mw-page-title-main">Boeing X-50 Dragonfly</span> US experimental drone aircraft

The Boeing X-50A Dragonfly, formerly known as the Canard Rotor/Wing Demonstrator, was a VTOL rotor wing experimental unmanned aerial vehicle that was developed by Boeing and DARPA to demonstrate the principle that a helicopter's rotor could be stopped in flight and act as a fixed wing, enabling it to transition between fixed-wing and rotary-wing flight.

<span class="mw-page-title-main">Gyrodyne</span>

A gyrodyne is a type of VTOL aircraft with a helicopter rotor-like system that is driven by its engine for takeoff and landing only, and includes one or more conventional propeller or jet engines to provide forward thrust during cruising flight. During forward flight the rotor is unpowered and free-spinning, like an autogyro, and lift is provided by a combination of the rotor and conventional wings. The gyrodyne is one of a number of similar concepts which attempt to combine helicopter-like low-speed performance with conventional fixed-wing high-speeds, including tiltrotors and tiltwings.

<span class="mw-page-title-main">Rotorcraft</span> Heavier-than-air aircraft which generates lift over rotating wings

A rotorcraft or rotary-wing aircraft is a heavier-than-air aircraft with rotary wings or rotor blades, which generate lift by rotating around a vertical mast. Several rotor blades mounted on a single mast are referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as "supported in flight by the reactions of the air on one or more rotors".

A convertiplane is defined by the Fédération Aéronautique Internationale as an aircraft which uses rotor power for vertical takeoff and landing (VTOL) and converts to fixed-wing lift in normal flight. In the US it is further classified as a sub-type of powered lift. In popular usage it sometimes includes any aircraft that converts in flight to change its method of obtaining lift.

<span class="mw-page-title-main">Bell Boeing Quad TiltRotor</span> Proposed four-rotor derivative of the V-22 Osprey

The Bell Boeing Quad TiltRotor (QTR) is a proposed four-rotor derivative of the Bell Boeing V-22 Osprey developed jointly by Bell Helicopter and Boeing. The concept is a contender in the U.S. Army's Joint Heavy Lift program. It would have a cargo capacity roughly equivalent to the C-130 Hercules, cruise at 250 knots, and land at unimproved sites vertically like a helicopter.

<span class="mw-page-title-main">Proprotor</span>

A proprotor is a spinning airfoil that function as both an airplane-style propeller and a helicopter-style rotor. Several proprotor-equipped convertiplanes, such as the Bell Boeing V-22 Osprey tiltrotor, are capable of switching back and forth between flying akin to both helicopters and fixed-wing aircraft. Accordingly this type of airfoil has been predominantly applied to vertical takeoff and landing (VTOL) aircraft.

<span class="mw-page-title-main">Tiltjet</span>

A tiltjet is an aircraft propulsion configuration that was historically tested for proposed Vertical Take-off and Landing (VTOL)-capable fighters.

<span class="mw-page-title-main">VTOL X-Plane</span> American experimental aircraft

The Vertical Take-Off and Landing Experimental Aircraft program is an American research project sponsored by the Defense Advanced Research Projects Agency (DARPA). The goal of the program is to demonstrate a VTOL aircraft design that can take off vertically and efficiently hover, while flying faster than conventional rotorcraft. There have been many previous attempts, most of them unsuccessful.

<span class="mw-page-title-main">Annular lift fan aircraft</span>

An annular lift fan aircraft is a conceptual vertical takeoff and landing (VTOL) aircraft that was first systematically and numerically investigated in 2015. This concept was proposed to offer a VTOL solution for both high hovering efficiency and high cruise speed, using a large annular lift fan instead of the relatively small conventional circular lift fans used in the Ryan XV-5 Vertifan and the F-35B Lightning II (JSF).

References