Protein toxicity

Last updated

Protein toxicity is the effect of the buildup of protein metabolic waste compounds, like urea, uric acid, ammonia, and creatinine. Protein toxicity has many causes, including urea cycle disorders, genetic mutations, excessive protein intake, and insufficient kidney function, such as chronic kidney disease and acute kidney injury. [1] [2] [3] [4] Symptoms of protein toxicity include unexplained vomiting and loss of appetite. Untreated protein toxicity can lead to serious complications such as seizures, encephalopathy, further kidney damage, and even death. [1] [5] [6]

Contents

Definition

Protein toxicity occurs when protein metabolic wastes build up in the body. During protein metabolism, nitrogenous wastes such as urea, uric acid, ammonia, and creatinine are produced. These compounds are not utilized by the human body and are usually excreted by the kidney. [7] However, due to conditions such as renal insufficiency, the under-functioning kidney is unable to excrete these metabolic wastes, causing them to accumulate in the body and lead to toxicity. Although there are many causes of protein toxicity, this condition is most prevalent in people with chronic kidney disease who consumes a protein-rich diet, specifically, proteins from animal sources that are rapidly digested and metabolized, causing the release of a high concentration of protein metabolic wastes in the blood stream rapidly. [8] [9]

Causes and pathophysiology

Protein toxicity has a significant role in neurodegenerative diseases. Whether it is due to high protein intake, pathological disorders lead to the accumulation of protein waste products, the no efficient metabolism of the proteins, or oligomerization of the amino acids from proteolysis. The mechanism by which protein can lead to well known neurodegenerative diseases includes transcriptions dysfunction, propagation, pathological cytoplasmic inclusions, mitochondrial and stress granule dysfunction. [4]

Ammonia, one of the waste products of protein metabolism, is very harmful, especially to the brain, where it crosses the blood brain barrier leading to a whole range of neurological dysfunctions from cognitive impairment to death. The brain has a mechanism to counteract the presence of this waste metabolite. One of the mechanisms involved in the impairment of the brain is the compromise of astrocyte potassium buffering, where astrocytes play a key role. However, as more ammonia crosses, the system gets saturated, leading to astrocyte swelling and brain edema. [10]

Urea is another waste product that originates from protein metabolism in humans. However, urea is used by the body as a source of nitrogen essential for growth and life. The most relevant disorders on the urea cycle are genetic, leading to defective enzymes or transporters inhibiting the reabsorption of urate with the subsequent increase in ammonia levels, which is toxic. [11]

High protein intake can lead to high protein waste, and this is different from protein poisoning since the issue relates to the high level of the waste metabolites. Usually, when protein consumption goes above one-third of the food we consumed, this situation presents. The liver has a limited capacity and won't deaminate proteins, leading to increased nitrogen in the body. The rate at which urea is excreted can not keep up with the rate at which it is produced. The catabolism of amino acids can lead to toxic levels of ammonia. Furthermore, there is a limited rate at which the gastrointestinal tract can absorb amino acids from proteins. [12]

Uric acid is not a waste metabolite derived from protein metabolism, but many high protein diets also contain higher relative fractions of nucleic acids. One of the two types of nucleic acids, purines (the other being pyrimidines, which are not problematic) are metabolized to uric acid in humans when in excess, which can lead to problems, chiefly gout.

The kidneys play an essential role in the reabsorption and excretion of uric acid. Certain transporters located in the nephron in the apical and basolateral surfaces regulate uric acid serum levels. Uric acid is not as toxic as other nitrogen derivates. It has an antioxidant function in the blood at low levels. People with compromised kidneys will have a lower excretion of uric acid leading to several diseases, including further renal damage, cardiovascular disease, diabetes, and gout. [13]

Creatinine might not be a direct indicator of protein toxicity; however, it is important to mention that creatinine could increase due to overwork by the kidneys exposed to high levels of protein waste. Also, high serum creatinine levels could indicate decreased renal filtration rate due to kidney disease, increase byproduct as a consequence of muscle breakdown, or high protein intake. [14]

Effects of a high protein diet

A high-protein diet is a health concern for those suffering from kidney disease. The main concern is that a high protein intake may promote further renal damage that can lead to protein toxicity. The physiological changes induced by an increased protein intake, such as an increased glomerular pressure and hyperfiltration, place further strain on already damaged kidneys. This strain can lead to proteins being inadequately metabolized and subsequently causing toxicity. A high-protein diet can lead to complications for those with renal disease and has been linked to further progression of the disease. The well-known Nurse's Health Study found a correlation between the loss of kidney function and an increased dietary intake of animal protein by people who had already been diagnosed with renal disease. [15] This association suggests that a total protein intake that exceeds the recommendations may accelerate renal disease and lead to risk of protein toxicity within a diseased individual. For this reason, dietary protein restriction is a common treatment for people with renal disease in which proteinuria is present. Protein restricted individuals have been shown to have slower rates of progression of their renal diseases. [16]

Several studies, however, have found no evidence of protein toxicity due to high protein intakes on kidney function in healthy people. [17] Diets that regularly exceed the recommendations for protein intake have been found to lead to an increased glomerular filtration rate in the kidneys and also have an effect on the hormone systems in the body. It is well established that these physiological effects are harmful to individuals with renal disease, but has not found these responses to be detrimental to those who are healthy and demonstrate adequate renal activity. In people with healthy kidney function, the kidneys work continuously to excrete the by-products of protein metabolism which prevents protein toxicity from occurring. In response to an increased consumption of dietary protein, the kidneys maintain homeostasis within the body by operating at an increased capacity, producing a higher amount of urea and subsequently excreting it from the body. Although some have proposed that this increase in waste production and excretion will cause increased strain on the kidneys, other research has not supported this. [15] Currently, evidence suggests that changes in renal function that occur in response to an increased dietary protein intake are part of the normal adaptive system employed by the body to sustain homeostasis. In a healthy individual with well-functioning kidneys, there is no need for concern that an increased dietary protein intake will lead to protein toxicity and decreased renal function.

Protein toxicity and other metabolic disorders associated with chronic kidney failure have been shown to related to more systemic complications such as atherosclerosis, anemia, malnutrition, and hyperparathyroidism. [18]

Symptoms

Unexplained vomiting and a loss of appetite are indicators of protein toxicity. If those two symptoms are accompanied by an ammonia quality on the breath, the onset of kidney failure is a likely culprit. People with kidney disease who are not on dialysis are advised to avoid consumption of protein if possible, as consuming too much accelerates the condition and can lead to death. Most of the problems stem from the accumulation of unfiltered toxins and wastes from protein metabolism.

Kidney function naturally declines with age due to the gradual loss of nephrons (filters) in the kidney.

Common causes of chronic kidney disease include diabetes, heart disease, long term untreated high blood pressure, [19] as well as abuse of analgesics like ibuprofen, aspirin, and paracetamol. [20] Kidney disease like the polycystic kidney disease can be genetic in nature and progress as the individual ages. [21]

Diagnosis

Under normal conditions in the body, ammonia, urea, uric acid, and creatinine are produced by protein metabolism and excreted through the kidney as urine. When these by-products cannot be excreted properly from the body they will accumulate and become highly toxic. Protein consumption is a major source of these waste products. An accumulation of these waste products can occur in people with kidney insufficiency who eat a diet rich in protein and therefore can not excrete the waste properly. [22]

Blood urea nitrogen (BUN) test measures the amount of urea nitrogen in the blood. Increased levels of urea in the blood (uremia) is an indicator for poor elimination of urea from the body usually due to kidney damage. [22] Increased BUN levels can be caused by kidney diseases, kidney stones, congestive heart failure, fever, and gastrointestinal bleedings. BUN levels can also be elevated in pregnant people and people whose diet consists mainly of protein. [23]

Increased creatinine levels in the blood can also be a sign of kidney damage and inability to excrete protein waste by-products properly.

A confirmation of kidney disease or kidney failure is often obtained by performing a blood test which measures the concentration of creatinine and urea (blood urea nitrogen). [23] A creatinine blood test and BUN test are usually performed together along with other blood panels for diagnosis. [24]

Treatment

Treatment options for protein toxicity can include renal replacement therapies like hemodialysis and hemofiltration. [25]

Lifestyle modifications like a diet low in protein, decreased sodium intake, and exercise can also be in incorporated as part of a treatment plan.

Medications may also be prescribed depending on symptoms. Common medications prescribed for kidney diseases include hypertension medications like angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) as they have been found to be kidney protective. [26] Diuretics may also be prescribed to facilitate with waste excretion as well as any fluid retention.

A kidney transplant surgery is another treatment option where a healthy kidney is donated from a living or deceased donor to the recipient. [25]

Complications

Accumulation of protein metabolic waste products in the body can cause diseases and serious complications such as gout, uremia, acute renal failure, seizure, encephalopathy, and death. These products of protein metabolism, including urea, uric acid, ammonia, and creatinine, are compounds that the human body must eliminate in order for the body to function properly.

The build up of uric acid causing high amount of uric acid in blood, is a condition called hyperuricemia. Long-standing hyperuricemia can cause deposition of monosodium urate crystals in or around joints, resulting in an arthritic condition called gout. [27]

When the body is unable to eliminate urea, it can cause a serious medical condition called uremia, which is a high level of urea in blood. Symptoms of uremia include nausea, vomiting, fatigue, anorexia, weight loss, and change in mental status. If left untreated, uremia can lead to seizure, coma, cardiac arrest, and death. [28] [29]

When the body is unable to process or eliminate ammonia, such as in protein toxicity, this will lead to the build up of ammonia in the bloodstream, causing a condition called hyperammonemia. Symptoms of elevated blood ammonia include muscle weakness and fatigue. If left untreated, ammonia can cross the blood brain barrier and affect brain tissues, leading to a spectrum of neuropsychiatric and neurological symptoms including impaired memory, seizure, confusion, delirium, excessive sleepiness, disorientation, brain edema, intracranial hypertension, coma, and even death. [30] [31] [32]

Epidemiology

The prevalence of protein toxicity cannot be accurately quantified as there are numerous etiologies from which protein toxicity can arise.

Many people have protein toxicity as a result of chronic kidney disease (CKD) or end-stage renal disease (ESRD). The prevalence of CKD (all stages) from 1988 to 2016 in the U.S. has remained relatively consistent at about 14.2% annually. [33] The prevalence of people who have received treatment for ESRD has increased to about 2,284 people per 1 million in 2018, up from 1927 people per 1 million in 2007. Prevalence of treated ESRD increases with age, is more prevalent in males than in females, and is higher in Native Hawaiians and Pacific Islanders over any other racial group. [34] However, the prevalence of protein toxicity specifically is difficult to quantify as people who have diseases that cause protein metabolites to accumulate typically initiate hemodialysis before they become symptomatic. [35]

Urea cycle disorders also cause toxic buildup of protein metabolites, namely ammonia. As of 2013, in the U.S., the incidence of urea cycle disorders has been estimated to be 1 case in every 31,000 births, resulting in about 113 new cases annually. [36]

Special Populations

Neonates

Protein toxicity, specifically ammonia buildup, can affect preterm newborns that have serious defects in the urea cycle enzymes with almost no physical manifestations at birth. Clinical symptoms can manifest within a few days of birth, causing extreme illness and intellectual disability or death, if left untreated. [3] Hyperammonemia in newborns can be diagnosed with visual cues like sepsis-like presentation, hyperventilation, fluctuating body temperature, and respiratory distress; blood panels can also be used to form differential diagnoses between hyperammonemia caused by urea cycle disorders and other disorders. [37]

Neurodegenerative diseases

People who have neurodegenerative diseases like Huntington's disease, dementia, Parkinson's disease, and amyotrophic lateral sclerosis (ALS), also often show symptoms of protein toxicity. [38] Cellular deficits and genetic mutations caused by these neurodegenerative diseases can pathologically alter gene transcription, negatively affecting protein metabolism. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Uric acid</span> Organic compound

Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown of purine nucleotides, and it is a normal component of urine. High blood concentrations of uric acid can lead to gout and are associated with other medical conditions, including diabetes and the formation of ammonium acid urate kidney stones.

The urea cycle (also known as the ornithine cycle) is a cycle of biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic.

<span class="mw-page-title-main">Kidney stone disease</span> Formation of mineral stones in the urinary tract

Kidney stone disease, also known as renal calculus disease, nephrolithiasis or urolithiasis, is a crystallopathy where a solid piece of material develops in the urinary tract. Renal calculi typically form in the kidney and leave the body in the urine stream. A small calculus may pass without causing symptoms. If a stone grows to more than 5 millimeters, it can cause blockage of the ureter, resulting in sharp and severe pain in the lower back or abdomen. A calculus may also result in blood in the urine, vomiting, or painful urination. About half of people who have had a renal calculus are likely to have another within ten years.

Azotemia is a medical condition characterized by abnormally high levels of nitrogen-containing compounds in the blood. It is largely related to insufficient or dysfunctional filtering of blood by the kidneys. It can lead to uremia and acute kidney injury if not controlled.

<span class="mw-page-title-main">Creatinine</span> Breakdown product of creatine phosphate

Creatinine is a breakdown product of creatine phosphate from muscle and protein metabolism. It is released at a constant rate by the body.

The excretory system is a passive biological system that removes excess, unnecessary materials from the body fluids of an organism, so as to help maintain internal chemical homeostasis and prevent damage to the body. The dual function of excretory systems is the elimination of the waste products of metabolism and to drain the body of used up and broken down components in a liquid and gaseous state. In humans and other amniotes, most of these substances leave the body as urine and to some degree exhalation, mammals also expel them through sweating.

<span class="mw-page-title-main">Excretion</span> Elimination by an organism of metabolic waste products

Excretion is a process in which metabolic waste is eliminated from an organism. In vertebrates, this is primarily carried out by the lungs, kidneys, and skin. This is in contrast with secretion, where the substance may have specific tasks after leaving the cell. Excretion is an essential process in all forms of life. For example, in placental mammals, urine is expelled through the urethra, which is part of the excretory system. In unicellular organisms, waste products are discharged directly through the surface of the cell.

<span class="mw-page-title-main">Kidney failure</span> Disease where the kidneys fail to adequately filter waste products from the blood

Kidney failure, also known as end-stage kidney disease, is a medical condition in which the kidneys can no longer adequately filter waste products from the blood, functioning at less than 15% of normal levels. Kidney failure is classified as either acute kidney failure, which develops rapidly and may resolve; and chronic kidney failure, which develops slowly and can often be irreversible. Symptoms may include leg swelling, feeling tired, vomiting, loss of appetite, and confusion. Complications of acute and chronic failure include uremia, hyperkalaemia, and volume overload. Complications of chronic failure also include heart disease, high blood pressure, and anaemia.

<span class="mw-page-title-main">Uremia</span> Type of kidney disease, urea in the blood

Uremia is the term for high levels of urea in the blood. Urea is one of the primary components of urine. It can be defined as an excess in the blood of amino acid and protein metabolism end products, such as urea and creatinine, which would be normally excreted in the urine. Uremic syndrome can be defined as the terminal clinical manifestation of kidney failure. It is the signs, symptoms and results from laboratory tests which result from inadequate excretory, regulatory, and endocrine function of the kidneys. Both uremia and uremic syndrome have been used interchangeably to denote a very high plasma urea concentration that is the result of renal failure. The former denotation will be used for the rest of the article.

<span class="mw-page-title-main">Hyperuricemia</span> Medical condition

Hyperuricaemia or hyperuricemia is an abnormally high level of uric acid in the blood. In the pH conditions of body fluid, uric acid exists largely as urate, the ion form. Serum uric acid concentrations greater than 6 mg/dL for females, 7 mg/dL for men, and 5.5 mg/dL for youth are defined as hyperuricemia. The amount of urate in the body depends on the balance between the amount of purines eaten in food, the amount of urate synthesised within the body, and the amount of urate that is excreted in urine or through the gastrointestinal tract. Hyperuricemia may be the result of increased production of uric acid, decreased excretion of uric acid, or both increased production and reduced excretion.

<span class="mw-page-title-main">Hyperammonemia</span> Medical condition

Hyperammonemia is a metabolic disturbance characterised by an excess of ammonia in the blood. It is a dangerous condition that may lead to brain injury and death. It may be primary or secondary.

<span class="mw-page-title-main">Chronic kidney disease</span> Medical condition

Chronic kidney disease (CKD) is a type of kidney disease in which a gradual loss of kidney function occurs over a period of months to years. Initially generally no symptoms are seen, but later symptoms may include leg swelling, feeling tired, vomiting, loss of appetite, and confusion. Complications can relate to hormonal dysfunction of the kidneys and include high blood pressure, bone disease, and anemia. Additionally CKD patients have markedly increased cardiovascular complications with increased risks of death and hospitalization.

Tumor lysis syndrome (TLS) is a group of metabolic abnormalities that can occur as a complication from the treatment of cancer, where large amounts of tumor cells are killed off (lysed) from the treatment, releasing their contents into the bloodstream. This occurs most commonly after the treatment of lymphomas and leukemias and in particular when treating non-Hodgkin lymphoma, acute myeloid leukemia, and acute lymphoblastic leukemia. This is a potentially fatal complication and patients at increased risk for TLS should be closely monitored while receiving chemotherapy and should receive preventive measures and treatments as necessary. TLS can also occur on its own although this is less common.

<span class="mw-page-title-main">Metabolic acidosis</span> Medical condition

Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance. Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. Metabolic acidosis can lead to acidemia, which is defined as arterial blood pH that is lower than 7.35. Acidemia and acidosis are not mutually exclusive – pH and hydrogen ion concentrations also depend on the coexistence of other acid-base disorders; therefore, pH levels in people with metabolic acidosis can range from low to high.

Metabolic wastes or excrements are substances left over from metabolic processes (such as cellular respiration) which cannot be used by the organism (they are surplus or toxic), and must therefore be excreted. This includes nitrogen compounds, water, CO2, phosphates, sulphates, etc. Animals treat these compounds as excretes. Plants have metabolic pathways which transforms some of them (primarily the oxygen compounds) into useful substances.

<span class="mw-page-title-main">Sodium phenylbutyrate</span> Chemical compound

Sodium phenylbutyrate, sold under the brand name Buphenyl among others, is a salt of an aromatic fatty acid, 4-phenylbutyrate (4-PBA) or 4-phenylbutyric acid. The compound is used to treat urea cycle disorders, because its metabolites offer an alternative pathway to the urea cycle to allow excretion of excess nitrogen.

In medicine, the urea-to-creatinine ratio (UCR), known in the United States as BUN-to-creatinine ratio, is the ratio of the blood levels of urea (BUN) (mmol/L) and creatinine (Cr) (μmol/L). BUN only reflects the nitrogen content of urea and urea measurement reflects the whole of the molecule, urea is just over twice BUN. In the United States, both quantities are given in mg/dL The ratio may be used to determine the cause of acute kidney injury or dehydration.

<span class="mw-page-title-main">Phenylacetylglutamine</span> Chemical compound

Phenylacetylglutamine is a product formed by the conjugation of phenylacetate and glutamine. It is a common metabolite that occurs naturally in human urine.

Glomerulonephrosis is a non-inflammatory disease of the kidney (nephrosis) presenting primarily in the glomerulus as nephrotic syndrome. The nephron is the functional unit of the kidney and it contains the glomerulus, which acts as a filter for blood to retain proteins and blood lipids. Damage to these filtration units results in important blood contents being released as waste in urine. This disease can be characterized by symptoms such as fatigue, swelling, and foamy urine, and can lead to chronic kidney disease and ultimately end-stage renal disease, as well as cardiovascular diseases. Glomerulonephrosis can present as either primary glomerulonephrosis or secondary glomerulonephrosis.

<span class="mw-page-title-main">High anion gap metabolic acidosis</span> Medical condition

High anion gap metabolic acidosis is a form of metabolic acidosis characterized by a high anion gap. Metabolic acidosis occurs when the body produces too much acid, or when the kidneys are not removing enough acid from the body. Several types of metabolic acidosis occur, grouped by their influence on the anion gap.

References

  1. 1 2 Gropman AL, Pappa B, Mew NA (August 2016). "The Urea Cycle Disorders". In Johnston M, Adams Jr H, Fatemi A (eds.). Neurobiology of Disease (2nd ed.). Oxford University Press. doi:10.1093/med/9780199937837.003.0063. ISBN   978-0-19-993783-7 via Oxford Medicine Online.
  2. Dubin RF, Rhee EP (March 2020). "Proteomics and Metabolomics in Kidney Disease, including Insights into Etiology, Treatment, and Prevention". Clinical Journal of the American Society of Nephrology. 15 (3): 404–411. doi:10.2215/CJN.07420619. PMC   7057308 . PMID   31636087.
  3. 1 2 Kölker S, Häberle J, Walker V (September 2016). "Urea Cycle Disorders". In Hollak CE, Lachmann R (eds.). Inherited Metabolic Disease in Adults: A Clinical Guide. Oxford University Press. doi:10.1093/med/9780199972135.003.0017. ISBN   978-0-19-997213-5 via Oxford Medicine Online.
  4. 1 2 3 Chung CG, Lee H, Lee SB (September 2018). "Mechanisms of protein toxicity in neurodegenerative diseases". Cellular and Molecular Life Sciences. 75 (17): 3159–3180. doi:10.1007/s00018-018-2854-4. PMC   6063327 . PMID   29947927.
  5. Singbartl K, Kellum JA (May 2012). "AKI in the ICU: definition, epidemiology, risk stratification, and outcomes". Kidney International. 81 (9): 819–25. doi: 10.1038/ki.2011.339 . PMID   21975865.
  6. Baum N, Dichoso CC, Carlton CE (May 1975). "Blood urea nitrogen and serum creatinine. Physiology and interpretations". Urology. 5 (5): 583–8. doi:10.1016/0090-4295(75)90105-3. PMID   1093306.
  7. Fowler S, Roush R, Wise J (2013). Concepts of biology. Open Textbook Library. Houston, Texas: OpenStax College, Rice University. ISBN   978-1-947172-03-6. OCLC   896436135.
  8. Kramer H (November 2019). "Diet and Chronic Kidney Disease". Advances in Nutrition. 10 (Suppl_4): S367–S379. doi:10.1093/advances/nmz011. PMC   6855949 . PMID   31728497.
  9. Ko GJ, Rhee CM, Kalantar-Zadeh K, Joshi S (August 2020). "The Effects of High-Protein Diets on Kidney Health and Longevity". Journal of the American Society of Nephrology. 31 (8): 1667–1679. doi:10.1681/ASN.2020010028. PMC   7460905 . PMID   32669325.
  10. Rangroo Thrane V, Thrane AS, Wang F, Cotrina ML, Smith NA, Chen M, et al. (December 2013). "Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering". Nature Medicine. 19 (12): 1643–8. doi:10.1038/nm.3400. PMC   3899396 . PMID   24240184.
  11. Matsumoto S, Häberle J, Kido J, Mitsubuchi H, Endo F, Nakamura K (September 2019). "Urea cycle disorders-update". Journal of Human Genetics. 64 (9): 833–847. doi:10.1038/s10038-019-0614-4. PMID   31110235. S2CID   159041386.
  12. Bilsborough S, Mann N (April 2006). "A review of issues of dietary protein intake in humans". International Journal of Sport Nutrition and Exercise Metabolism. 16 (2): 129–52. doi: 10.1123/ijsnem.16.2.129 . PMID   16779921. S2CID   10339366.
  13. Wempe MF, Jutabha P, Quade B, Iwen TJ, Frick MM, Ross IR, et al. (April 2011). "Developing potent human uric acid transporter 1 (hURAT1) inhibitors". Journal of Medicinal Chemistry. 54 (8): 2701–13. doi:10.1021/jm1015022. PMC   3124071 . PMID   21449597.
  14. Salazar, Jose H. (2014). "Overview of Urea and Creatinine". Laboratory Medicine. 45 (1): e19–e20. doi: 10.1309/LM920SBNZPJRJGUT . ISSN   0007-5027.
  15. 1 2 Martin WF, Armstrong LE, Rodriguez NR (September 2005). "Dietary protein intake and renal function". Nutrition & Metabolism. 2 (25): 25. doi: 10.1186/1743-7075-2-25 . PMC   1262767 . PMID   16174292.
  16. Brocklebank JT, Wolfe S (December 1993). "Dietary treatment of renal insufficiency". Archives of Disease in Childhood. 69 (6): 704–8. doi:10.1136/adc.69.6.704. PMC   1029661 . PMID   8285787.
  17. Narasaki, Yoko; Okuda, Yusuke; Moore, Linda W.; You, Amy S.; Tantisattamo, Ekamol; Inrig, Jula K.; Miyagi, Tsuyoshi; Nakata, Tracy; Kovesdy, Csaba P.; Nguyen, Danh V.; Kalantar-Zadeh, Kamyar; Rhee, Connie M. (2021-07-01). "Dietary protein intake, kidney function, and survival in a nationally representative cohort". The American Journal of Clinical Nutrition. 114 (1): 303–313. doi:10.1093/ajcn/nqab011. ISSN   1938-3207. PMC   8246621 . PMID   33742197.
  18. Cibulka R, Racek J (2007). "Metabolic disorders in patients with chronic kidney failure". Physiological Research. 56 (6): 697–705. doi: 10.33549/physiolres.931128 . PMID   17298212. S2CID   11575668.
  19. Parmar MS (July 2002). "Chronic renal disease". BMJ. 325 (7355): 85–90. doi:10.1136/bmj.325.7355.85. PMC   1123635 . PMID   12114240.
  20. Hörl WH (July 2010). "Nonsteroidal Anti-Inflammatory Drugs and the Kidney". Pharmaceuticals. 3 (7): 2291–2321. doi: 10.3390/ph3072291 . PMC   4036662 . PMID   27713354.
  21. Harris PC, Torres VE (2009). "Polycystic kidney disease". Annual Review of Medicine. 60: 321–37. doi:10.1146/annurev.med.60.101707.125712. PMC   2834200 . PMID   18947299.
  22. 1 2 Weiner ID, Mitch WE, Sands JM (August 2015). "Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion". Clinical Journal of the American Society of Nephrology. 10 (8): 1444–58. doi:10.2215/CJN.10311013. PMC   4527031 . PMID   25078422.
  23. 1 2 Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA, Vernekar SN (April 2010). "Markers of renal function tests". North American Journal of Medical Sciences. 2 (4): 170–3. PMC   3354405 . PMID   22624135.
  24. Kashani K, Rosner MH, Ostermann M (February 2020). "Creatinine: From physiology to clinical application". European Journal of Internal Medicine. 72: 9–14. doi:10.1016/j.ejim.2019.10.025. PMID   31708357. S2CID   207936826.
  25. 1 2 Chen TK, Knicely DH, Grams ME (October 2019). "Chronic Kidney Disease Diagnosis and Management: A Review". JAMA. 322 (13): 1294–1304. doi:10.1001/jama.2019.14745. PMC   7015670 . PMID   31573641.
  26. Breyer MD, Susztak K (November 2016). "Developing Treatments for Chronic Kidney Disease in the 21st Century". Seminars in Nephrology. 36 (6): 436–447. doi:10.1016/j.semnephrol.2016.08.001. PMC   5423404 . PMID   27987541.
  27. Bardin T, Richette P (March 2014). "Definition of hyperuricemia and gouty conditions". Current Opinion in Rheumatology. 26 (2): 186–91. doi:10.1097/BOR.0000000000000028. PMID   24419750. S2CID   205484442.
  28. Meyer TW, Hostetter TH (September 2007). "Uremia". The New England Journal of Medicine. 357 (13): 1316–25. doi:10.1056/NEJMra071313. PMID   17898101.
  29. Alper AB, Shenava RG, Young BA (2021). Batuman V (ed.). "Uremia: Practice Essentials, Pathophysiology, Etiology". Medscape.
  30. "Ammonia Levels: MedlinePlus Medical Test". MedinePlus. U.S. National Library of Medicine.
  31. Bosoi CR, Rose CF (March 2009). "Identifying the direct effects of ammonia on the brain". Metabolic Brain Disease. 24 (1): 95–102. doi:10.1007/s11011-008-9112-7. hdl: 1866/9593 . PMID   19104924. S2CID   3330087.
  32. Walker V (2014). "Ammonia metabolism and hyperammonemic disorders". Advances in Clinical Chemistry. 67: 73–150. doi:10.1016/bs.acc.2014.09.002. ISBN   9780128022672. PMID   25735860.
  33. "218 Understanding and Making the Most of the Centers for Disease Control and Prevention's (CDC) Chronic Kidney Disease (CKD) Surveillance System". American Journal of Kidney Diseases. 77 (4): 636. 2021. doi:10.1053/j.ajkd.2021.02.223. ISSN   0272-6386. S2CID   241114421.
  34. "End-Stage Renal Disease (ESRD) Among U.S. Residents Adjusted by Age, Gender, Race". Chronic Kidney Disease (CKD) Surveillance System. U.S. Centers for Disease Control and Prevention. Retrieved 2021-07-30.
  35. Zemaitis MR, Foris LA, Katta S, Bashir K (2021). "Uremia". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID   28722889 . Retrieved 2021-07-30.
  36. Summar ML, Koelker S, Freedenberg D, Le Mons C, Haberle J, Lee HS, Kirmse B (2013). "The incidence of urea cycle disorders". Molecular Genetics and Metabolism. 110 (1–2): 179–80. doi:10.1016/j.ymgme.2013.07.008. PMC   4364413 . PMID   23972786.
  37. Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, et al. (November 2019). "Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision". Journal of Inherited Metabolic Disease. 42 (6): 1192–1230. doi:10.1002/jimd.12100. PMID   30982989. S2CID   115197052.
  38. Taylor JP, Hardy J, Fischbeck KH (June 2002). "Toxic proteins in neurodegenerative disease". Science. 296 (5575): 1991–5. doi:10.1126/science.1067122. PMID   12065827. S2CID   6478305.

Further reading