Quadratic Frobenius test

Last updated

The quadratic Frobenius test (QFT) is a probabilistic primality test to determine whether a number is a probable prime. It is named after Ferdinand Georg Frobenius. The test uses the concepts of quadratic polynomials and the Frobenius automorphism. It should not be confused with the more general Frobenius test using a quadratic polynomial – the QFT restricts the polynomials allowed based on the input, and also has other conditions that must be met. A composite passing this test is a Frobenius pseudoprime, but the converse is not necessarily true.

Contents

Concept

Grantham's stated goal when developing the algorithm was to provide a test that primes would always pass and composites would pass with a probability of less than 1/7710. [1] :33

The test was later extended by Damgård and Frandsen to a test called extended quadratic Frobenius test (EQFT). [2]

Algorithm

Let n be a positive integer such that n is odd, and let b and c be integers such that and , where denotes the Jacobi symbol. Set . Then a QFT on n with parameters (b, c) works as follows:

(1) Test whether one of the primes less than or equal to the lower of the two values and divides n. If yes, then stop: n is composite.
(2) Test whether . If yes, then stop: n is composite.
(3) Compute . If , then stop: n is composite.
(4) Compute . If , then stop: n is composite.
(5) Let with s odd. If , and for all , then stop: n is composite.

If the QFT does not stop in steps (1)–(5), then n is a probable prime.

(The notation means that , where H and K are polynomials.)

See also

Related Research Articles

<span class="mw-page-title-main">Chinese remainder theorem</span> Theorem for solving simultaneous congruences

In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

<span class="mw-page-title-main">Quadratic reciprocity</span> Gives conditions for the solvability of quadratic equations modulo prime numbers

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gka. Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n.

In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial splits into linear terms when reduced mod . That is, it determines for which prime numbers the relation

The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known. It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties. It was invented by Carl Pomerance in 1981 as an improvement to Schroeppel's linear sieve.

In number theory, the Kronecker symbol, written as or , is a generalization of the Jacobi symbol to all integers . It was introduced by Leopold Kronecker.

The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen in 1977, is a probabilistic test to determine if a number is composite or probably prime. The idea behind the test was discovered by M. M. Artjuhov in 1967 (see Theorem E in the paper). This test has been largely superseded by the Baillie–PSW primality test and the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility of the RSA cryptosystem. The Solovay–Strassen test is essentially an Euler–Jacobi probable prime test.

In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two. This was certainly familiar before Hilbert.

In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p.

In number theory, a Frobenius pseudoprime is a pseudoprime, whose definition was inspired by the quadratic Frobenius test described by Jon Grantham in a 1998 preprint and published in 2000. Frobenius pseudoprimes can be defined with respect to polynomials of degree at least 2, but they have been most extensively studied in the case of quadratic polynomials.

The Tonelli–Shanks algorithm is used in modular arithmetic to solve for r in a congruence of the form r2n, where p is a prime: that is, to find a square root of n modulo p.

In mathematics and computer science, a primality certificate or primality proof is a succinct, formal proof that a number is prime. Primality certificates allow the primality of a number to be rapidly checked without having to run an expensive or unreliable primality test. "Succinct" usually means that the proof should be at most polynomially larger than the number of digits in the number itself.

In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of order is isomorphic to , the ring of -adic integers. They have a highly non-intuitive structure upon first glance because their additive and multiplicative structure depends on an infinite set of recursive formulas which do not behave like addition and multiplication formulas for standard p-adic integers.

The Okamoto–Uchiyama cryptosystem is a public key cryptosystem proposed in 1998 by Tatsuaki Okamoto and Shigenori Uchiyama. The system works in the multiplicative group of integers modulo n, , where n is of the form p2q and p and q are large primes.

In mathematics, a permutation polynomial is a polynomial that acts as a permutation of the elements of the ring, i.e. the map is a bijection. In case the ring is a finite field, the Dickson polynomials, which are closely related to the Chebyshev polynomials, provide examples. Over a finite field, every function, so in particular every permutation of the elements of that field, can be written as a polynomial function.

In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and François Morain, in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing followed quickly.

Coppersmith's attack describes a class of cryptographic attacks on the public-key cryptosystem RSA based on the Coppersmith method. Particular applications of the Coppersmith method for attacking RSA include cases when the public exponent e is small or when partial knowledge of a prime factor of the secret key is available.

Kunerth's algorithm is an algorithm for computing the modular square root of a given number. The algorithm does not require the factorization of the modulus, and relies on modular operations that is often easy when the given number is prime.

References

  1. Grantham, J. (1998). "A Probable Prime Test With High Confidence". Journal of Number Theory. 72 (1): 32–47. CiteSeerX   10.1.1.56.8827 . doi:10.1006/jnth.1998.2247. S2CID   119640473.
  2. Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg (2003). "An Extended Quadratic Frobenius Primality Test with Average and Worst Case Error Estimates". Fundamentals of Computation Theory (PDF). Lecture Notes in Computer Science. Vol. 2751. Springer Berlin Heidelberg. pp. 118–131. doi:10.1007/978-3-540-45077-1_12. ISBN   978-3-540-45077-1. ISSN   1611-3349.