Radiofrequency coil

Last updated

Radiofrequency coils (RF coils) are the receivers, and sometimes also the transmitters, of radiofrequency (RF) signals in equipment used in magnetic resonance imaging (MRI).

Contents

The MR signal in MRI is produced by the process of resonance, which is the result of radiofrequency pulses. They consist of two electromagnetic coils, the transmitter and receiver, which generate the field and receive the resulting signal. Atomic nuclei of interest in MRI studies have their own resonant frequencies, in the radiofrequency portion of the electromagnetic spectrum. [1]

Although the electromagnetic fields produced by the transmitting coil are in the RF range of tens of megahertz (often in the shortwave radio portion of the electromagnetic spectrum) at powers usually exceeding the highest powers used by amateur radio, there is very little RF interference produced by the MRI machine. The reason for this is that the MRI is a very poor radio transmitter, and is without an antenna. The RF frequency electromagnetic field produced in the "transmitting coil" is a magnetic near-field with very little associated changing electric field component (such as all conventional radio wave transmissions have). Thus, the high-powered electromagnetic field produced in the MRI transmitter coil does not produce much electromagnetic radiation at its RF frequency, and the RF power is confined to the coil space and not radiated as "radio waves." Thus, the transmitting coil is a good EM near-field generator at radio frequency, but a poor EM radiation transmitter at radio frequency.

The receiver coil picks up the oscillations at RF frequencies produced by precession of the magnetic moment of nuclei inside the subject. The signal acquired by the coil is thus an induced emf, and is not the result of picking up radio waves. This is a common misconception, and unfortunately, has propagated through the literature. MRI scanners are generally situated in metal mesh lined rooms which act as Faraday cages.)

Types

RF coils for MRI can be grouped into two different classes: volume coils and surface coils.

Volume Coils

Volume coils are designed to provide a homogeneous RF excitation across a large volume. Most clinical MRI scanners include a built in volume coil to perform whole-body imaging, and smaller volume coils have been constructed for the head and other extremities.

Common designs for volume coils include Birdcage Coils, TEM Coils, [2] and Saddle Coils. These coils require a great deal of RF power because of their size, so they are often driven in quadrature in order to reduce by two the RF power requirements.

The condition to attain a high RF magnetic field homogeneity is to approximate spatial cosine current distribution in radiofrequency coil. [3] The RF homogeneity of volume coils is highly desirable for transmission, but is less ideal when the region of interest is small. The large field of view of volume coils means that they receive noise from the whole body, not just the region of interest.

Surface Coils

Surface coils are designed to provide a very high RF sensitivity over a small region of interest. These coils are often single or multi-turn loops which are placed directly over the anatomy of interest. The size of these coils can be optimized for the specific region of interest.

Surface coils make poor transmission coils because they have poor RF homogeneity, even over their region of interest. Their small field of view makes them ideal as receivers, as they only detect noise from the region of interest.

See also

Related Research Articles

Magnetic resonance imaging Medical imaging technique

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from CT and PET scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy.

Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around 20 kHz to around 300 GHz. This is roughly between the upper limit of audio frequencies and the lower limit of infrared frequencies; these are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves. Different sources specify different upper and lower bounds for the frequency range.

Radio-frequency induction or RF induction is the use of a radio frequency magnetic field to transfer energy by means of electromagnetic induction in the near field. A radio-frequency alternating current is passed through a coil of wire that acts as the transmitter, and a second coil or conducting object, magnetically coupled to the first coil, acts as the receiver.

Transmitter Electronic device that emits radio waves

In electronics and telecommunications a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

Radio wave Type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared radiation. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At 300 GHz, the corresponding wavelength is 1 mm ; at 30 Hz the corresponding wavelength is 10,000 km. Like all electromagnetic waves, radio waves in a vacuum travel at the speed of light, and in the Earth's atmosphere at a close, but slightly lower speed. Radio waves are generated by charged particles undergoing acceleration, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects.

Faraday cage Enclosure of conductive mesh used to block electric fields

A Faraday cage or Faraday shield is an enclosure used to block electromagnetic fields. A Faraday shield may be formed by a continuous covering of conductive material, or in the case of a Faraday cage, by a mesh of such materials. Faraday cages are named after scientist Michael Faraday, who invented them in 1836.

Very low frequency The range 3-30 kHz of the electromagnetic spectrum

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3–30 kHz, corresponding to wavelengths from 100 to 10 km, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters. Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations and for secure military communication. Since VLF waves can penetrate at least 40 meters (131 ft) into saltwater, they are used for military communication with submarines.

Antenna (radio) Electrical device

In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

Radio receiver Radio device for receiving radio waves and converting them to a useful signal

In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

Wireless power transfer Transmission of electrical energy without wires as a physical link

Wireless power transfer (WPT), wireless power transmission, wireless energy transmission (WET), or electromagnetic power transfer is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, a transmitter device, driven by electric power from a power source, generates a time-varying electromagnetic field, which transmits power across space to a receiver device, which extracts power from the field and supplies it to an electrical load. The technology of wireless power transmission can eliminate the use of the wires and batteries, thus increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.

Specific absorption rate (SAR) is a measure of the rate at which energy is absorbed per unit mass by a human body when exposed to a radio frequency (RF) electromagnetic field. It can also refer to absorption of other forms of energy by tissue, including ultrasound. It is defined as the power absorbed per mass of tissue and has units of watts per kilogram (W/kg).

Spark-gap transmitter Type of radio transmitter

A spark-gap transmitter is an obsolete type of radio transmitter which generates radio waves by means of an electric spark. Spark-gap transmitters were the first type of radio transmitter, and were the main type used during the wireless telegraphy or "spark" era, the first three decades of radio, from 1887 to the end of World War I. German physicist Heinrich Hertz built the first experimental spark-gap transmitters in 1887, with which he proved the existence of radio waves and studied their properties.

Loop antenna type of radio antenna

A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor, that is usually fed by a balanced source or feeding a balanced load. Within this physical description there are two distinct antenna types:

Nuclear magnetic resonance (NMR) in the geomagnetic field is conventionally referred to as Earth's field NMR (EFNMR). EFNMR is a special case of low field NMR.

Nuclear magnetic resonance Spectroscopic technique relying on the energy of electrons

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).

Physics of magnetic resonance imaging

The physics of magnetic resonance imaging (MRI) concerns fundamental physical considerations of MRI techniques and technological aspects of MRI devices. MRI is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels among others. Contrast agents may be injected intravenously or into a joint to enhance the image and facilitate diagnosis. Unlike CT and X-ray, MRI uses no ionizing radiation and is, therefore, a safe procedure suitable for diagnosis in children and repeated runs. Patients with specific non-ferromagnetic metal implants, cochlear implants, and cardiac pacemakers nowadays may also have an MRI in spite of effects of the strong magnetic fields. This does not apply on older devices, details for medical professionals are provided by the device's manufacturer.

A shim is a device used to adjust the homogeneity of a magnetic field. Shims received their name from the purely mechanical shims used to adjust position and parallelity of the pole faces of an electromagnet. Coils used to adjust the homogeneity of a magnetic field by changing the current flowing through it were called "electrical current shims" because of their similar function.

Microcoil

A microcoil is a tiny electrical conductor such as a wire in the shape of a spiral or helix which could be a solenoid or a planar structure. One field where these are found is nuclear magnetic resonance (NMR) spectroscopy, where it identifies radio frequency (RF) coils that are smaller than 1 mm.

An MRI artifact is a visual artifact in magnetic resonance imaging (MRI). It is a feature appearing in an image that is not present in the original object. Many different artifacts can occur during MRI, some affecting the diagnostic quality, while others may be confused with pathology. Artifacts can be classified as patient-related, signal processing-dependent and hardware (machine)-related.

References

  1. Huettel, S.A. Functional Magnetic Resonance Imaging. USA: Sinauer. p. 31.
  2. Vaughan, J.T.; Adriany, G.; Snyder, C.J.; Tian, J.; et al. (1 October 2004). "Efficient high-frequency body coil for high-field MRI". Magnetic Resonance in Medicine. 52 (4): 851–859. doi: 10.1002/mrm.20177 . PMID   15389967.
  3. Coillot, C.; Nativel, E.; Zanca, M.; Goze-Bac, C. (2016). "The magnetic field homogeneity of coils by means of the space harmonics suppression of the current density distribution". Journal of Sensors and Sensor Systems. 5 (2): 401–408. Bibcode:2016JSSS....5..401C. doi: 10.5194/jsss-5-401-2016 .