Release modulator

Last updated

A release modulator, or neurotransmitter release modulator, is a type of drug that modulates the release of one or more neurotransmitters. Examples of release modulators include monoamine releasing agents such as the substituted amphetamines (which induce the release of norepinephrine, dopamine, and/or serotonin) and release inhibitors such as botulinum toxin A (which inhibits acetylcholine release by inactivating SNAP-25, thereby preventing exocytosis from occurring).

Drug Chemical substance having an effect on the body

A drug is any substance that, when inhaled, injected, smoked, consumed, absorbed via a patch on the skin, or dissolved under the tongue causes a physiological change in the body.

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. This is in contrast to synaptic transmission in which an axonal terminal secretes neurotransmitters to target fast-acting receptors of only one particular partner neuron. Neuromodulators are neurotransmitters that diffuse through neural tissue to affect slow-acting receptors of many neurons. Major neuromodulators in the central nervous system include dopamine, serotonin, acetylcholine, histamine, and norepinephrine. Neuromodulators are known to have modulatory effects on target areas such as decorrelation of spiking, increase of firing rate, sharpening of spatial tuning curves, maintenance of increased spiking during working memory.

Neurotransmitter endogenous chemicals that transmit signals across a synapse from one neuron to another

Neurotransmitters are endogenous chemicals that enable neurotransmission. It is a type of chemical messenger which transmits signals across a chemical synapse, such as a neuromuscular junction, from one neuron to another "target" neuron, muscle cell, or gland cell. Neurotransmitters are released from synaptic vesicles in synapses into the synaptic cleft, where they are received by neurotransmitter receptors on the target cells. Many neurotransmitters are synthesized from simple and plentiful precursors such as amino acids, which are readily available from the diet and only require a small number of biosynthetic steps for conversion. Neurotransmitters play a major role in shaping everyday life and functions. Their exact numbers are unknown, but more than 200 chemical messengers have been uniquely identified.

See also

A reuptake modulator, or transporter modulator, is a type of drug which modulates the reuptake of one or more neurotransmitters via their respective neurotransmitter transporters. Examples of reuptake modulators include reuptake inhibitors and reuptake enhancers.

A channel modulator, or ion channel modulator, is a type of drug which modulates ion channels. They include channel blockers and channel openers.

An enzyme modulator is a type of drug which modulates enzymes. They include enzyme inhibitors and enzyme inducers. In an homogenous assay, "an enzyme modulator ... is covalently linked to the ligand which competes with free ligand from the test sample for the available antibodies."

Related Research Articles

Psychopharmacology the study of the effects drugs have on mood, sensation, thinking, and behavior

Psychopharmacology is the scientific study of the effects drugs have on mood, sensation, thinking, and behavior. It is distinguished from neuropsychopharmacology, which emphasizes the correlation between drug-induced changes in the functioning of cells in the nervous system and changes in consciousness and behavior.

Neurotransmitter receptor

A neurotransmitter receptor is a membrane receptor protein that is activated by a neurotransmitter. Chemicals on the outside of the cell, such as a neurotransmitter, can bump into the cell's membrane and along the membrane we can find receptors. If a neurotransmitter bumps into its corresponding receptor, they will bind and can trigger other events to occur inside the cell. Therefore, a membrane receptor is part of the molecular machinery that allows cells to communicate with one another. A neurotransmitter receptor is a class of receptors that specifically binds with neurotransmitters as opposed to other molecules.

The vesicular monoamine transporter (VMAT) is a transport protein integrated into the membrane of synaptic vesicles of presynaptic neurons. It acts to transport monoamine neurotransmitters – such as dopamine, serotonin, norepinephrine, epinephrine, and histamine – into the vesicles, which release the neurotransmitters into synapses as chemical messages to postsynaptic neurons. VMATs utilize a proton gradient generated by V-ATPases in vesicle membranes to power monoamine import.

GABAergic means "pertaining to or affecting the neurotransmitter GABA". A synapse is GABAergic if it uses GABA as its neurotransmitter. A GABAergic neuron produces GABA. A substance is GABAergic if it produces its effects via interactions with the GABA system, such as by stimulating or blocking neurotransmission.

An autoreceptor is a type of receptor located in the membranes of presynaptic nerve cells. It serves as part of a negative feedback loop in signal transduction. It is only sensitive to the neurotransmitters or hormones released by the neuron on which the autoreceptor sits. Similarly, a heteroreceptor is sensitive to neurotransmitters and hormones that are not released by the cell on which it sits. A given receptor can act as either an autoreceptor or a heteroreceptor, depending upon the type of transmitter released by the cell on which it is embedded.

Neurotransmission

Neurotransmission, is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron, and bind to and react with the receptors on the dendrites of another neuron. A similar process occurs in retrograde neurotransmission, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters that signal through receptors that are located on the axon terminal of the presynaptic neuron, mainly at GABAergic and glutamatergic synapses.

Neurotransmitter transporters are a class of membrane transport proteins that span the cellular membranes of neurons. Their primary function is to carry neurotransmitters across these membranes and to direct their further transport to specific intracellular locations. There are more than twenty types of neurotransmitter transporters.

N-type calcium channel Protein family

N-type calcium channels are voltage gated calcium channels that are distributed throughout the entire body. These channels are high voltage activated channels composed of alpha-1B subunits. The alpha subunit forms the pore through which the calcium enters and helps to determine most of the channel's properties. The alpha subunit is also known as the calcium channel/voltage dependent/N type, alpha 1 subunit (CACNA1B), or calcium voltage-gated channel subunit alpha1 B. The subunit is essential to modulate neurotransmitter release. They also contain associated subunits such as β1, β3, β4, α2δ, and possibly γ. These channels are known for their importance in the nervous system. They play a small role in the migration of immature neurons before the establishment of their mature synapses, and they are critically involved in the release of neurotransmitters, which is also similar to another type of calcium channels, known as P-type calcium channels. N-type calcium channels are targets for the development of drugs to relieve chronic and neuropathic pain. They are also used for the treatment of hypertension, Autism Spectrum Disorder, Osteoarthritis, and other medical diagnoses. Additionally, N-type calcium channels have known functions in the kidney, and heart. There are many known N-type calcium channel blockers that function to inhibit channel activity, although the most notable blockers are ω-Conotoxins. Blockers, like ω-Conotoxins, can interfere with many different biological and therapeutic processes.

GABA receptor agonist GABA receptor agonist medication

A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative effects, and may also cause other effects such as anxiolytic, anticonvulsant, and muscle relaxant effects. There are three receptors of the gamma-aminobutyric acid. The two receptors GABA-α and GABA-ρ are ion channels that are permeable to chloride ions which reduces neuronal excitability. The GABA-β receptor belongs to the class of G-Protein coupled receptors that inhibit adenylyl cyclase, therefore leading to decreased cyclic adenosine monophosphate (cAMP). GABA-α and GABA-ρ receptors produce sedative and hypnotic effects and have anti-convulsion properties. GABA-β receptors also produce sedative effects. Furthermore, they lead to changes in gene transcription.

Benzofuranylpropylaminopentane chemical compound


Benzofuranylpropylaminopentane is a drug with an unusual effects profile. It can loosely be grouped with the stimulant or antidepressant drug families, but its mechanism of action is quite different.

Reuptake inhibitor

A reuptake inhibitor (RI) is a type of drug known as a reuptake modulator that inhibits the plasmalemmal transporter-mediated reuptake of a neurotransmitter from the synapse into the pre-synaptic neuron. This leads to an increase in extracellular concentrations of the neurotransmitter and an increase in neurotransmission. Various drugs exert their psychological and physiological effects through reuptake inhibition, including many antidepressants and psychostimulants.

Monoaminergic means "working on monoamine neurotransmitters", which include serotonin, dopamine, norepinephrine, epinephrine, and histamine.

Reuptake enhancer

A reuptake enhancer (RE), also sometimes referred to as a reuptake activator, is a type of reuptake modulator which enhances the plasmalemmal transporter-mediated reuptake of a neurotransmitter from the synapse into the pre-synaptic neuron, leading to a decrease in the extracellular concentrations of the neurotransmitter and therefore a decrease in neurotransmission.

Endocannabinoid reuptake inhibitors (eCBRIs), also called cannabinoid reuptake inhibitors (CBRIs), are drugs which limit the reabsorption of endocannabinoid neurotransmitters by the releasing neuron.

SoRI-20041 chemical compound

SoRI-20041 is an "antagonist-like" allosteric modulator of amphetamine-induced dopamine release. SoRI-20041 is believed to be the first example of a drug that separately modulates uptake versus release in the dopamine transporter ; it produces the same effects as SoRI-20040 and SoRI-9804 in uptake assays and binding assays, inhibiting the re-uptake of dopamine, but does not modulate d-amphetamine-induced DA release by inhibiting that as well, like 'agonists' of the series do.

A serotonin modulator and stimulator (SMS), sometimes referred to more simply as a serotonin modulator, is a type of drug with a multimodal action specific to the serotonin neurotransmitter system. To be precise, SMSs simultaneously modulate one or more serotonin receptors and inhibit the reuptake of serotonin. The term was created to describe the mechanism of action of the serotonergic antidepressant vortioxetine, which acts as a serotonin reuptake inhibitor (SRI), agonist of the 5-HT1A receptor, and antagonist of the 5-HT3 and 5-HT7 receptors. However, it can also technically be applied to vilazodone, which is an antidepressant as well and acts as an SRI and 5-HT1A receptor partial agonist.

An excitatory amino acid reuptake inhibitor (EAARI) is a type of drug which inhibits the reuptake of the excitatory neurotransmitters glutamate and aspartate by blocking one or more of the excitatory amino acid transporters (EAATs).

References