Return loss

Last updated

In telecommunications, return loss is a measure in relative terms of the power of the signal reflected by a discontinuity in a transmission line or optical fiber. This discontinuity can be caused by a mismatch between the termination or load connected to the line and the characteristic impedance of the line. It is usually expressed as a ratio in decibels (dB);

Contents

where RL(dB) is the return loss in dB, Pi is the incident power and Pr is the reflected power.

Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ). Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high. A high return loss is desirable and results in a lower insertion loss.

From a certain perspective 'Return Loss' is a misnomer. The usual function of a transmission line is to convey power from a source to a load with minimal loss. If a transmission line is correctly matched to a load, the reflected power will be zero, no power will be lost due to reflection, and 'Return Loss' will be infinite. Conversely if the line is terminated in an open circuit, the reflected power will be equal to the incident power; all of the incident power will be lost in the sense that none of it will be transferred to a load, and RL will be zero. Thus the numerical values of RL tend in the opposite sense to that expected of a 'loss'.

Sign

As defined above, RL will always be positive, since Pr can never exceed Pi . However, return loss has historically been expressed as a negative number, and this convention is still widely found in the literature. [1] Strictly speaking, if a negative sign is ascribed to RL, the ratio of reflected to incident power is implied;

where RL'(dB) is the negative of RL(dB).

In practice, the sign ascribed to RL is largely immaterial. If a transmission line includes several discontinuities along its length, the total return loss will be the sum of the RLs caused by each discontinuity, and provided all RLs are given the same sign, no error or ambiguity will result. Whichever convention is used, it will always be understood that Pr can never exceed Pi .

Electrical

In metallic conductor systems, reflections of a signal traveling down a conductor can occur at a discontinuity or impedance mismatch. The ratio of the amplitude of the reflected wave Vr to the amplitude of the incident wave Vi is known as the reflection coefficient .

Return loss is the negative of the magnitude of the reflection coefficient in dB. Since power is proportional to the square of the voltage, return loss is given by,

where the vertical bars indicate magnitude. Thus, a large positive return loss indicates the reflected power is small relative to the incident power, which indicates good impedance match between transmission line and load.

If the incident power and the reflected power are expressed in 'absolute' decibel units, (e.g., dBm), then the return loss in dB can be calculated as the difference between the incident power Pi (in absolute decibel units) and the reflected power Pr (also in absolute decibel units),

Optical

In optics (particularly in fiber optics) a loss that takes place at discontinuities of refractive index, especially at an air-glass interface such as a fiber endface. At those interfaces, a fraction of the optical signal is reflected back toward the source. This reflection phenomenon is also called " Fresnel reflection loss," or simply "Fresnel loss."

Fiber optic transmission systems use lasers to transmit signals over optical fiber, and a low optical return loss (ORL) can cause the laser to stop transmitting correctly. The measurement of ORL is becoming more important in the characterization of optical networks as the use of wavelength-division multiplexing increases. These systems use lasers that have a lower tolerance for ORL, and introduce elements into the network that are located in close proximity to the laser.

where is the reflected power and is the incident, or input, power.

See also

Notes

    Related Research Articles

    The decibel is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 or root-power ratio of 10120.

    <span class="mw-page-title-main">Characteristic impedance</span> Property of an electrical circuit

    The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively, and equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

    In telecommunications, insertion loss is the loss of signal power resulting from the insertion of a device in a transmission line or optical fiber and is usually expressed in decibels (dB).

    <span class="mw-page-title-main">Reflection coefficient</span> Measure of wave reflectivity

    In physics and electrical engineering the reflection coefficient is a parameter that describes how much of a wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the amplitude of the reflected wave to the incident wave, with each expressed as phasors. For example, it is used in optics to calculate the amount of light that is reflected from a surface with a different index of refraction, such as a glass surface, or in an electrical transmission line to calculate how much of the electromagnetic wave is reflected by an impedance discontinuity. The reflection coefficient is closely related to the transmission coefficient. The reflectance of a system is also sometimes called a "reflection coefficient".

    Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

    <span class="mw-page-title-main">Standing wave ratio</span> Measure used in radio engineering and telecommunications

    In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

    <span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

    In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

    <span class="mw-page-title-main">Waveguide</span> Structure that guides waves efficiently

    A waveguide is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include acoustic waveguides which direct sound, optical waveguides which direct light, and radio-frequency waveguides which direct electromagnetic waves other than light like radio waves.

    <span class="mw-page-title-main">Signal reflection</span> When a transmitted signal reflects back through the medium it was transmitted over

    In telecommunications, signal reflection occurs when a signal is transmitted along a transmission medium, such as a copper cable or an optical fiber. Some of the signal power may be reflected back to its origin rather than being carried all the way along the cable to the far end. This happens because imperfections in the cable cause impedance mismatches and non-linear changes in the cable characteristics. These abrupt changes in characteristics cause some of the transmitted signal to be reflected. In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient.

    <span class="mw-page-title-main">Antenna (radio)</span> Electrical device

    In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

    <span class="mw-page-title-main">Effective radiated power</span> Definition of directional radio frequency power

    Effective radiated power (ERP), synonymous with equivalent radiated power, is an IEEE standardized definition of directional radio frequency (RF) power, such as that emitted by a radio transmitter. It is the total power in watts that would have to be radiated by a half-wave dipole antenna to give the same radiation intensity as the actual source antenna at a distant receiver located in the direction of the antenna's strongest beam. ERP measures the combination of the power emitted by the transmitter and the ability of the antenna to direct that power in a given direction. It is equal to the input power to the antenna multiplied by the gain of the antenna. It is used in electronics and telecommunications, particularly in broadcasting to quantify the apparent power of a broadcasting station experienced by listeners in its reception area.

    <span class="mw-page-title-main">Impedance matching</span> Adjusting input/output impedances of an electrical circuit for some purpose

    In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.

    In telecommunications, particularly in radio frequency engineering, signal strength refers to the transmitter power output as received by a reference antenna at a distance from the transmitting antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m). For very low-power systems, such as mobile phones, signal strength is usually expressed in dB-microvolts per metre (dBμV/m) or in decibels above a reference level of one milliwatt (dBm). In broadcasting terminology, 1 mV/m is 1000 μV/m or 60 dBμ.

    Scattering parameters or S-parameters describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals.

    <span class="mw-page-title-main">Transmission coefficient</span>

    The transmission coefficient is used in physics and electrical engineering when wave propagation in a medium containing discontinuities is considered. A transmission coefficient describes the amplitude, intensity, or total power of a transmitted wave relative to an incident wave.

    <span class="mw-page-title-main">Π pad</span> An attenuator whose circuit components are in the shape of the Greek letter pi

    The Π pad is a specific type of attenuator circuit in electronics whereby the topology of the circuit is formed in the shape of the Greek capital letter pi (Π).

    Mismatch loss in transmission line theory is the amount of power expressed in decibels that will not be available on the output due to impedance mismatches and signal reflections. A transmission line that is properly terminated, that is, terminated with the same impedance as that of the characteristic impedance of the transmission line, will have no reflections and therefore no mismatch loss. Mismatch loss represents the amount of power wasted in the system. It can also be thought of as the amount of power gained if the system was perfectly matched. Impedance matching is an important part of RF system design; however, in practice there will likely be some degree of mismatch loss. In real systems, relatively little loss is due to mismatch loss and is often on the order of 1dB.

    <span class="mw-page-title-main">Reflections of signals on conducting lines</span> Electrical waves in return direction

    A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.

    Metal-mesh optical filters are optical filters made from stacks of metal meshes and dielectric. They are used as part of an optical path to filter the incoming light to allow frequencies of interest to pass while reflecting other frequencies of light.

    <span class="mw-page-title-main">T pad</span>

    The T pad is a specific type of attenuator circuit in electronics whereby the topology of the circuit is formed in the shape of the letter "T".

    References

    Notes
    1. Trevor S. Bird, "Definition and Misuse of Return Loss", IEEE Antennas & Propagation Magazine, vol.51, iss.2, pp. 166–167, April 2009.
    Bibliography