Revenue equivalence

Last updated

Revenue equivalence is a concept in auction theory that states that given certain conditions, any mechanism that results in the same outcomes (i.e. allocates items to the same bidders) also has the same expected revenue.

Contents

Notation

There is a set of possible outcomes.

There are agents which have different valuations for each outcome. The valuation of agent (also called its "type") is represented as a function:

which expresses the value it has for each alternative, in monetary terms.

The agents have quasilinear utility functions; this means that, if the outcome is and in addition the agent receives a payment (positive or negative), then the total utility of agent is:

The vector of all value-functions is denoted by .

For every agent , the vector of all value-functions of the other agents is denoted by . So .

A mechanism is a pair of functions:

The agents' types are independent identically-distributed random variables. Thus, a mechanism induces a Bayesian game in which a player's strategy is his reported type as a function of his true type. A mechanism is said to be Bayesian-Nash incentive compatible if there is a Bayesian Nash equilibrium in which all players report their true type.

Statement

Under these assumptions, the revenue equivalence theorem then says the following. [1] :236–237

For any two Bayesian-Nash incentive compatible mechanisms, if:

then:

Example

A classic example is the pair of auction mechanisms: first price auction and second price auction. First-price auction has a variant which is Bayesian-Nash incentive compatible; second-price auction is dominant-strategy-incentive-compatible, which is even stronger than Bayesian-Nash incentive compatible. The two mechanisms fulfill the conditions of the theorem because:

Indeed, the expected payment for each player is the same in both auctions, and the auctioneer's revenue is the same; see the page on first-price sealed-bid auction for details.

Equivalence of auction mechanisms in single item auctions

In fact, we can use revenue equivalence to prove that many types of auctions are revenue equivalent. For example, the first price auction, second price auction, and the all-pay auction are all revenue equivalent when the bidders are symmetric (that is, their valuations are independent and identically distributed).

Second price auction

Consider the second price single item auction, in which the player with the highest bid pays the second highest bid. It is optimal for each player to bid its own value .

Suppose wins the auction, and pays the second highest bid, or . The revenue from this auction is simply .

First price auction

In the first price auction, where the player with the highest bid simply pays its bid, if all players bid using a bidding function this is a Nash equilibrium.

In other words, if each player bids such that they bid the expected value of second highest bid, assuming that theirs was the highest, then no player has any incentive to deviate. If this were true, then it is easy to see that the expected revenue from this auction is also if wins the auction.

Proof

To prove this, suppose that a player 1 bids where , effectively bluffing that its value is rather than . We want to find a value of such that the player's expected payoff is maximized.

The probability of winning is then . The expected cost of this bid is . Then a player's expected payoff is

Let , a random variable. Then we can rewrite the above as

.

Using the general fact that , we can rewrite the above as

.

Taking derivatives with respect to , we obtain

.

Thus bidding with your value maximizes the player's expected payoff. Since is monotone increasing, we verify that this is indeed a maximum point.

English auction

In the open ascending price auction (aka English auction), a buyer's dominant strategy is to remain in the auction until the asking price is equal to his value. Then, if he is the last one remaining in the arena, he wins and pays the second-highest bid.

Consider the case of two buyers, each with a value that is an independent draw from a distribution with support [0,1], cumulative distribution function F(v) and probability density function f(v). If buyers behave according to their dominant strategies, then a buyer with value v wins if his opponent's value x is lower. Thus his win probability is

and his expected payment is

The expected payment conditional upon winning is therefore

Multiplying both sides by F(v) and differentiating by v yields the following differential equation for e(v).

.

Rearranging this equation,

Let B(v) be the equilibrium bid function in the sealed first-price auction. We establish revenue equivalence by showing that B(v)=e(v), that is, the equilibrium payment by the winner in one auction is equal to the equilibrium expected payment by the winner in the other.

Suppose that a buyer has value v and bids b. His opponent bids according to the equilibrium bidding strategy. The support of the opponent's bid distribution is [0,B(1)]. Thus any bid of at least B(1) wins with probability 1. Therefore, the best bid b lies in the interval [0,B(1)] and so we can write this bid as b = B(x) where x lies in [0,1]. If the opponent has value y he bids B(y). Therefore, the win probability is

.

The buyer's expected payoff is his win probability times his net gain if he wins, that is,

.

Differentiating, the necessary condition for a maximum is

.

That is if B(x) is the buyer's best response it must satisfy this first order condition. Finally we note that for B(v) to be the equilibrium bid function, the buyer's best response must be B(v). Thus x=v. Substituting for x in the necessary condition,

.

Note that this differential equation is identical to that for e(v). Since e(0)=B(0)=0 it follows that .

Using revenue equivalence to predict bidding functions

We can use revenue equivalence to predict the bidding function of a player in a game. Consider the two player version of the second price auction and the first price auction, where each player's value is drawn uniformly from .

Second price auction

The expected payment of the first player in the second price auction can be computed as follows:

Since players bid truthfully in a second price auction, we can replace all prices with players' values. If player 1 wins, he pays what player 2 bids, or . Player 1 himself bids . Since payment is zero when player 1 loses, the above is

Since come from a uniform distribution, we can simplify this to

First price auction

We can use revenue equivalence to generate the correct symmetric bidding function in the first price auction. Suppose that in the first price auction, each player has the bidding function , where this function is unknown at this point.

The expected payment of player 1 in this game is then

(as above)

Now, a player simply pays what the player bids, and let's assume that players with higher values still win, so that the probability of winning is simply a player's value, as in the second price auction. We will later show that this assumption was correct. Again, a player pays nothing if he loses the auction. We then obtain

By the Revenue Equivalence principle, we can equate this expression to the revenue of the second-price auction that we calculated above:

From this, we can infer the bidding function:

Note that with this bidding function, the player with the higher value still wins. We can show that this is the correct equilibrium bidding function in an additional way, by thinking about how a player should maximize his bid given that all other players are bidding using this bidding function. See the page on first-price sealed-bid auction.

All-pay auctions

Similarly, we know that the expected payment of player 1 in the second price auction is , and this must be equal to the expected payment in the all-pay auction, i.e.

Thus, the bidding function for each player in the all-pay auction is

Implications

An important implication of the theorem is that any single-item auction which unconditionally gives the item to the highest bidder is going to have the same expected revenue. This means that, if we want to increase the auctioneer's revenue, the outcome function must be changed. One way to do this is to set a Reservation price on the item. This changes the Outcome function since now the item is not always given to the highest bidder. By carefully selecting the reservation price, an auctioneer can get a substantially higher expected revenue. [1] :237

Limitations

The revenue-equivalence theorem breaks in some important cases: [1] :238–239

Related Research Articles

<span class="mw-page-title-main">Probability density function</span> Function whose integral over a region describes the probability of an event occurring in that region

In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample. Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0, the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample.

<span class="mw-page-title-main">Mechanism design</span> Field in game theory

Mechanism design is a field in economics and game theory that takes an objectives-first approach to designing economic mechanisms or incentives, toward desired objectives, in strategic settings, where players act rationally. Because it starts at the end of the game, then goes backwards, it is also called reverse game theory. It has broad applications, from economics and politics in fields such as market design, auction theory and social choice theory to networked-systems.

In game theory, an asymmetric game where players have private information is said to be strategy-proof or strategyproof (SP) if it is a weakly-dominant strategy for every player to reveal his/her private information, i.e. given no information about what the others do, you fare best or at least not worse by being truthful.

<span class="mw-page-title-main">Vickrey auction</span> Auction priced by second-highest sealed bid

A Vickrey auction or sealed-bid second-price auction (SBSPA) is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other people in the auction. The highest bidder wins but the price paid is the second-highest bid. This type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value. The auction was first described academically by Columbia University professor William Vickrey in 1961 though it had been used by stamp collectors since 1893. In 1797 Johann Wolfgang von Goethe sold a manuscript using a sealed-bid, second-price auction.

<span class="mw-page-title-main">Linkage principle</span>

The linkage principle is a finding of auction theory. It states that auction houses have an incentive to pre-commit to revealing all available information about each lot, positive or negative. The linkage principle is seen in the art market with the tradition of auctioneers hiring art experts to examine each lot and pre-commit to provide a truthful estimate of its value.

<span class="mw-page-title-main">Common value auction</span>

In common valueauctions the value of the item for sale is identical amongst bidders, but bidders have different information about the item's value. This stands in contrast to a private value auction where each bidder's private valuation of the item is different and independent of peers' valuations.

In mathematics and economics, the envelope theorem is a major result about the differentiability properties of the value function of a parameterized optimization problem. As we change parameters of the objective, the envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not contribute to the change in the objective function. The envelope theorem is an important tool for comparative statics of optimization models.

The actuarial present value (APV) is the expected value of the present value of a contingent cash flow stream. Actuarial present values are typically calculated for the benefit-payment or series of payments associated with life insurance and life annuities. The probability of a future payment is based on assumptions about the person's future mortality which is typically estimated using a life table.

<span class="mw-page-title-main">Auction theory</span> Branch of applied economics regarding the behavior of bidders in auctions

Auction theory is an applied branch of economics which deals with how bidders act in auction markets and researches how the features of auction markets incentivise predictable outcomes. Auction theory is a tool used to inform the design of real-world auctions. Sellers use auction theory to raise higher revenues while allowing buyers to procure at a lower cost. The conference of the price between the buyer and seller is an economic equilibrium. Auction theorists design rules for auctions to address issues which can lead to market failure. The design of these rulesets encourages optimal bidding strategies among a variety of informational settings. The 2020 Nobel Prize for Economics was awarded to Paul R. Milgrom and Robert B. Wilson “for improvements to auction theory and inventions of new auction formats.”

<span class="mw-page-title-main">First-price sealed-bid auction</span> Auction where all participants concurrently submit undisclosed bids

A first-price sealed-bid auction (FPSBA) is a common type of auction. It is also known as blind auction. In this type of auction, all bidders simultaneously submit sealed bids so that no bidder knows the bid of any other participant. The highest bidder pays the price that was submitted.

Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

<span class="mw-page-title-main">All-pay auction</span>

In economics and game theory, an all-pay auction is an auction in which every bidder must pay regardless of whether they win the prize, which is awarded to the highest bidder as in a conventional auction. As shown by Riley and Samuelson (1981), equilibrium bidding in an all pay auction with private information is revenue equivalent to bidding in a sealed high bid or open ascending price auction.

<span class="mw-page-title-main">Vickrey–Clarke–Groves auction</span> Type of sealed-bid multiple-item auction

A Vickrey–Clarke–Groves (VCG) auction is a type of sealed-bid auction of multiple items. Bidders submit bids that report their valuations for the items, without knowing the bids of the other bidders. The auction system assigns the items in a socially optimal manner: it charges each individual the harm they cause to other bidders. It gives bidders an incentive to bid their true valuations, by ensuring that the optimal strategy for each bidder is to bid their true valuations of the items; it can be undermined by bidder collusion and in particular in some circumstances by a single bidder making multiple bids under different names. It is a generalization of a Vickrey auction for multiple items.

<span class="mw-page-title-main">Market design</span>

Market design is a practical methodology for creation of markets of certain properties, which is partially based on mechanism design. In some markets, prices may be used to induce the desired outcomes — these markets are the study of auction theory. In other markets, prices may not be used — these markets are the study of matching theory.

In mechanism design, a Vickrey–Clarke–Groves (VCG) mechanism is a generic truthful mechanism for achieving a socially-optimal solution. It is a generalization of a Vickrey–Clarke–Groves auction. A VCG auction performs a specific task: dividing items among people. A VCG mechanism is more general: it can be used to select any outcome out of a set of possible outcomes.

A Bayesian-optimal mechanism (BOM) is a mechanism in which the designer does not know the valuations of the agents for whom the mechanism is designed, but the designer knows that they are random variables and knows the probability distribution of these variables.

A sequential auction is an auction in which several items are sold, one after the other, to the same group of potential buyers. In a sequential first-price auction (SAFP), each individual item is sold using a first price auction, while in a sequential second-price auction (SASP), each individual item is sold using a second price auction.

<span class="mw-page-title-main">Jump bidding</span> Auction signalling strategy using seemingly irrational bids

In auction theory, jump bidding is the practice of increasing the current price in an English auction, substantially more than the minimal allowed amount.

<span class="mw-page-title-main">Price of anarchy in auctions</span>

The Price of Anarchy (PoA) is a concept in game theory and mechanism design that measures how the social welfare of a system degrades due to selfish behavior of its agents. It has been studied extensively in various contexts, particularly in auctions.

Regularity, sometimes called Myerson's regularity, is a property of probability distributions used in auction theory and revenue management. Examples of distributions that satisfy this condition include Gaussian, uniform, and exponential; some power law distributions also satisfy regularity. Distributions that satisfy the regularity condition are often referred to as "regular distributions".

References

  1. 1 2 3 Vazirani, Vijay V.; Nisan, Noam; Roughgarden, Tim; Tardos, Éva (2007). Algorithmic Game Theory (PDF). Cambridge, UK: Cambridge University Press. ISBN   0-521-87282-0.