Rice hulls

Last updated
Rice husk Rice chaffs.jpg
Rice husk

Rice hulls or husks are the hard protecting coverings of grains of rice. In addition to protecting rice during the growing season, rice hulls can be put to use as building material, fertilizer, insulation material, or fuel. Rice hulls are part of the chaff of the rice.

Contents

Production

Rice hulls are part of the rice seed. The hull protects the grain during the growing season from pests. The hull is formed from hard materials, including opaline silica and lignin. The hull is hard to eat or swallow (unless finely ground) and mostly indigestible to humans because of its enriched fibre components. However, during times of food scarcity in ancient China, a common daily meal was a pastry made from rice husks, wild vegetables, and soybean powder. This led to the idiom "meals of cereal, hulls, and vegetables for half a year," indicating poverty and food insecurity.[ citation needed ] Testing and commercialization of human grade anti-caking agents were done in the early 2000s. The material is approved for use in USDA Certified Organic products to replace silicon dioxide.

Winnowing, used to separate the rice from hulls, is to put the whole rice into a pan and throw it into the air while the wind blows. The light hulls are blown away while the heavy rice fall back into the pan. Later pestles and a simple machine called a rice pounder were developed to remove hulls. In 1885 the modern rice hulling machine was invented in Brazil. During the milling processes, the hulls are removed from the raw grain to reveal whole brown rice, which is then usually milled further to remove the bran layer, resulting in white rice.

Uses

The temples of the Batujaya Archaeological Site in Indonesia (5th century AD) were built with bricks containing rice hulls. Bata Candi-candi Batujaya.JPG
The temples of the Batujaya Archaeological Site in Indonesia (5th century AD) were built with bricks containing rice hulls.

Ash

Combustion of rice hulls affords rice husk ash (acronym RHA). This ash is a potential source of amorphous reactive silica, which has a variety of applications in materials science. Most of the ash is used in the production of Portland cement. [1] When burnt completely, the ash can have a Blaine number of as much as 3,600 compared to the Blaine number of cement (between 2,800 and 3,000), meaning it is finer than cement. Silica is the basic component of sand, which is used with cement for plastering and concreting. This fine silica will provide a very compact concrete. The ash also is a very good thermal insulation material. The fineness of the ash also makes it a very good candidate for sealing fine cracks in civil structures, where it can penetrate deeper than the conventional cement sand mixture.

Rice husk ash has long been used in ceramic glazes in rice growing regions in the Far East, e.g. China and Japan. [2] Being about 95% silica, it is an easy way of introducing the necessary silica into the glaze, and the small particle size helps with an early melt of the glaze.

A number of possible uses for RHA include absorbents for oils and chemicals, soil ameliorants, a source of silicon, insulation powder in steel mills, as repellents in the form of "vinegar-tar" release agent in the ceramics industry, as an insulation material. More specialized applications include the use of this material as a catalyst support. [3]

Goodyear announced plans to use rice husk ash as a source for tire additive. [4] [5]

Rice hulls are a low-cost material from which silicon carbide "whiskers" can be manufactured. The SiC whiskers are then used to reinforce ceramic cutting tools, increasing their strength tenfold. [6]

Toothpaste

In Tamilnadu & Kerala, India, charcoal from Rice husks (Umikari in Tamil & Malayalam) were majorly used for over centuries in cleaning teeth, before toothpaste replaced it.

Rice bran oil

Rice bran oil is the oil extracted from the hard outer brown layer of rice called chaff (rice husk). It is popular as a cooking oil in the Indian subcontinent and East Asian countries, including India, Nepal, Bangladesh, Indonesia, Japan, Southern China and Malaysia.

Brewing

Rice hulls can be used in brewing beer to increase the lautering ability of a mash. Rice husk is also used in one step of traditional preparation processes of Kaoliang (Sorghum) liquid. After fermentation, rice husk can be added into the wine tank to increase the void, which is advantageous for distillation.

Fertilizer and substrate

Rice hulls can be composted, but their high lignin content can make this a slow process. Sometimes earthworms are used to accelerate the process. Using vermicomposting techniques, hulls can be converted to fertilizer in about four months.

Rice hulls that are parboiled (PBH) are used as a substrate or medium for gardening, including certain hydrocultures. The hulls decay over time. Rice hulls allow drainage, [7] and retain less water than growstones. [8] It has been shown that rice hulls do not affect plant growth regulation. [7]

Fireworks

Rice hulls are coated with fine-grained gunpowder and used as the main bursting charge in aerial fireworks shells.

Fuel

Rice hulls can be pressed into logs for use in cooking fires instead of wood Packaging of woodfire made by rice residue.jpg
Rice hulls can be pressed into logs for use in cooking fires instead of wood

With proper techniques, rice hulls can be burned and used to power steam engines. Some rice mills originally disposed of hulls in this way.[ citation needed ] Unfortunately the direct combustion of rice hulls produces large quantities of smoke. An alternative is gasification. Rice hulls are easily gasified in top-lit updraft gasifiers. The combustion of this rice hull gas produces a blue flame, and rice hull biochar makes a good soil amendment. [9]

Rice chaff being put to a brickmaking kiln in Mekong delta

Traditional brickmaking kilns in Mekong Delta are using rice hulls as fuel.

Juice extraction

Rice hulls are used as a "press aid" to improve extraction efficiency of apple pressing. [10]

Pet food fiber

Rice hulls are an inexpensive byproduct of human food processing, serving as a source of fiber that is considered a filler ingredient in pet foods. [11]

Pillow stuffing

Rice hulls are used as pillow stuffing. The pillows are loosely stuffed and considered therapeutic as they retain the shape of the head.

Insulating material

Rice hulls themselves are a class A thermal insulating material because they are difficult to burn and less likely to allow moisture to propagate mold or fungi. [12] It is also used as roofing after mixing it with mud and water.

Particle boards and cardboard

Rice hulls are also used to make particle boards and cardboard. The silica in rice husk make the particle boards less attractive to termites. [13]

Geopolymers

Due to high amorphous silica content, the RHA (rice husk ash) can be used as a precursor material for geopolymer concrete. [14]

Rice concrete

To achieve the best pozzolanic properties the combustion of the husks has to be carefully controlled by keeping the temperature below 700 °C and to create conditions to minimize carbon formation by feeding sufficient air. [15] [16] At a given water-cement ratio, the addition of small amounts of rice hull ash (2 to 3% of cement mass) may be useful to improve the workability of concrete mixtures by reducing the cement milk separation and segregation and increasing the strength and durability of concrete. [17] However, the introduction of large quantities of this additive may result in poor workability of the concrete mixture if strong water reducing additives are not used. [18]

See also

Related Research Articles

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.

<span class="mw-page-title-main">Cement</span> Hydraulic binder used in the composition of mortar and concrete

A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.

<span class="mw-page-title-main">Silicon dioxide</span> Oxide of silicon

Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula SiO2, commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is abundant as it comprises several minerals and synthetic products. All forms are white or colorless, although impure samples can be colored.

<span class="mw-page-title-main">Wood gas</span> Syngas fuel created by gasification of biomass

Wood gas is a fuel gas that can be used for furnaces, stoves, and vehicles. During the production process, biomass or related carbon-containing materials are gasified within the oxygen-limited environment of a wood gas generator to produce a combustible mixture. In some gasifiers this process is preceded by pyrolysis, where the biomass or coal is first converted to char, releasing methane and tar rich in polycyclic aromatic hydrocarbons.

<span class="mw-page-title-main">Silicon carbide</span> Extremely hard semiconductor

Silicon carbide (SiC), also known as carborundum, is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal since 1893 for use as an abrasive. Grains of silicon carbide can be bonded together by sintering to form very hard ceramics that are widely used in applications requiring high endurance, such as car brakes, car clutches and ceramic plates in bulletproof vests. Large single crystals of silicon carbide can be grown by the Lely method and they can be cut into gems known as synthetic moissanite.

<span class="mw-page-title-main">Slag</span> By-product of smelting ores and used metals

Slag is a by-product of smelting (pyrometallurgical) ores and recycled metals. Slag is mainly a mixture of metal oxides and silicon dioxide. Broadly, it can be classified as ferrous, ferroalloy or non-ferrous/base metals. Within these general categories, slags can be further categorized by their precursor and processing conditions.

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

Sodium silicate is a generic name for chemical compounds with the formula Na
2x
Si
y
O
2y+x
or (Na
2
O)
x
·(SiO
2
)
y
, such as sodium metasilicate Na
2
SiO
3
, sodium orthosilicate Na
4
SiO
4
, and sodium pyrosilicate Na
6
Si
2
O
7
. The anions are often polymeric. These compounds are generally colorless transparent solids or white powders, and soluble in water in various amounts.

Calcium silicate is the chemical compound Ca2SiO4, also known as calcium orthosilicate and is sometimes formulated as 2CaO·SiO2. It is also referred to by the shortened trade name Cal-Sil or Calsil. It occurs naturally as the mineral larnite.

<span class="mw-page-title-main">Pozzolana</span> Natural siliceous or siliceous-aluminous material

Pozzolana or pozzuolana, also known as pozzolanic ash, is a natural siliceous or siliceous-aluminous material which reacts with calcium hydroxide in the presence of water at room temperature. In this reaction insoluble calcium silicate hydrate and calcium aluminate hydrate compounds are formed possessing cementitious properties. The designation pozzolana is derived from one of the primary deposits of volcanic ash used by the Romans in Italy, at Pozzuoli. The modern definition of pozzolana encompasses any volcanic material, predominantly composed of fine volcanic glass, that is used as a pozzolan. Note the difference with the term pozzolan, which exerts no bearing on the specific origin of the material, as opposed to pozzolana, which can only be used for pozzolans of volcanic origin, primarily composed of volcanic glass.

<span class="mw-page-title-main">Silica fume</span> Silicon dioxide nano particles

Silica fume, also known as microsilica, is an amorphous (non-crystalline) polymorph of silicon dioxide, silica. It is an ultrafine powder collected as a by-product of the silicon and ferrosilicon alloy production and consists of spherical particles with an average particle diameter of 150 nm. The main field of application is as pozzolanic material for high performance concrete.

Air entrainment in concrete is the intentional creation of tiny air bubbles in a batch by adding an air entraining agent during mixing. A form of surfactant it allows bubbles of a desired size to form. These are created during concrete mixing, with most surviving to remain part of it when hardened.

Metakaolin is the anhydrous calcined form of the clay mineral kaolinite. Rocks that are rich in kaolinite are known as china clay or kaolin, traditionally used in the manufacture of porcelain. The particle size of metakaolin is smaller than cement particles, but not as fine as silica fume.

<span class="mw-page-title-main">Biochar</span> Lightweight black residue, made of carbon and ashes, after pyrolysis of biomass

Biochar is a carbon-rich residue derived from the pyrolysis of biomass and stands at the intersection of sustainability, agriculture, and environmental stewardship. This versatile material, characterized by its stable carbon composition, emerges as a promising tool in addressing pressing challenges such as soil degradation, carbon sequestration, and agricultural productivity enhancement.

<span class="mw-page-title-main">Pozzolan</span> Siliceous volcanic ashes commonly used as supplementary cementitious material

Pozzolans are a broad class of siliceous and aluminous materials which, in themselves, possess little or no cementitious value but which will, in finely divided form and in the presence of water, react chemically with calcium hydroxide (Ca(OH)2) at ordinary temperature to form compounds possessing cementitious properties. The quantification of the capacity of a pozzolan to react with calcium hydroxide and water is given by measuring its pozzolanic activity. Pozzolana are naturally occurring pozzolans of volcanic origin.

<span class="mw-page-title-main">Cement clinker</span> Main component of Portland cement

Cement clinker is a solid material produced in the manufacture of portland cement as an intermediary product. Clinker occurs as lumps or nodules, usually 3 millimetres (0.12 in) to 25 millimetres (0.98 in) in diameter. It is produced by sintering limestone and aluminosilicate materials such as clay during the cement kiln stage.

<span class="mw-page-title-main">Coal combustion products</span> By-products of coal combustion

Coal combustion products (CCPs), also called coal combustion wastes (CCWs) or coal combustion residuals (CCRs), are categorized in four groups, each based on physical and chemical forms derived from coal combustion methods and emission controls:

Geopolymers are inorganic, typically ceramic, materials that form long-range, covalently bonded, non-crystalline (amorphous) networks. Geopolymers are a sub-class of alkali-activated cements. They are mainly produced by a chemical reaction between a chemically reactive aluminosilicate powder, and an aqueous solution that causes this powder to react and form into a solid monolith. The most common pathway to produce geopolymers is by the reaction of metakaolin with sodium silicate, which is an alkaline solution, but other processes are also possible.

<span class="mw-page-title-main">Types of concrete</span> Building material consisting of aggregates cemented by a binder

Concrete is produced in a variety of compositions, finishes and performance characteristics to meet a wide range of needs.

The pozzolanic activity is a measure for the degree of reaction over time or the reaction rate between a pozzolan and Ca2+ or calcium hydroxide (Ca(OH)2) in the presence of water. The rate of the pozzolanic reaction is dependent on the intrinsic characteristics of the pozzolan such as the specific surface area, the chemical composition and the active phase content.

References

Citations

  1. Otto W. Flörke, et al. "Silica" in Ullmann's Encyclopedia of Industrial Chemistry, 2008, Weinheim: Wiley-VCH, . doi : 10.1002/14356007.a23_583.pub3.
  2. Tichane, Robert (1998). Ash Glazes. Krause Publications. ISBN   0873416600.
  3. J. Chumee et al. "Characterization of platinum–iron catalysts supported on MCM-41 synthesized with rice husk silica and their performance for phenol hydroxylation" Sci. Technol. Adv. Mater. 9 (2008) 015006 free download
  4. "Goodyear Converts Waste from Rice Harvest to Fuel-Efficient Tire Treads". Archived from the original on January 24, 2015. Retrieved February 9, 2015.
  5. Goodyear Reaches Supply Agreements for Rice Husk Ash Silica (Online video) (YouTube). Goodyear Tire and Rubber Company. 2015-06-09. Retrieved 2016-05-26.
  6. "SiC Whisker-Reinforced Ceramic Composites". Materials Science and Technology Division - Physical Sciences Directorate. Oak Ridge, TN, USA: Oak Ridge National Laboratory. Archived from the original on 2009-08-16. Retrieved 2013-06-06.
  7. 1 2 Wallheimer, Brian (October 25, 2010). "Rice hulls a sustainable drainage option for greenhouse growers". Purdue University . Retrieved August 30, 2012.
  8. "Growstones ideal alternative to perlite, parboiled rice hulls". (e) Science News. 2011-12-04. Retrieved 2013-06-06.
  9. Olivier, Paul; Hyman, Todd (2012-03-27). "Biomass Gasification and the Benefits of Biochar" (PDF). Engineering, Separation and Recycling LLC. Retrieved 2013-06-06.
  10. "Press aids". Vincent Corp. Archived from the original on 2010-01-09.
  11. "Ingredients to avoid". The Dog Food Project. Archived from the original on 2018-04-04. Retrieved 2013-06-04.
  12. "Rice hulls in construction - Appropedia: The sustainability wiki". Appropedia. 2013-02-23. Retrieved 2014-02-23.
  13. Coxworth, Ben (28 May 2015). "Rice husks may find use in cheaper, greener, longer-lasting particleboard". New Atlas. GIZMAG PTY LTD 2017. Retrieved 4 December 2017.
  14. Das, Shaswat Kumar; Mishra, Jyotirmoy; Singh, Saurabh Kumar; et al. (29 March 2020). "Characterization and utilization of rice husk ash (RHA) in fly ash – Blast furnace slag based geopolymer concrete for sustainable future". Materials Today: Proceedings. 33: 5162–5167. doi:10.1016/j.matpr.2020.02.870. S2CID   216202502.
  15. "Effects of exposure to elevated temperatures on properties of concrete containing rice husk ash". researchgate.net. Retrieved 2022-10-10.
  16. Umasabor, R. I.; Okovido, J. O. (2018). "Fire resistance evaluation of rice husk ash concrete". Heliyon. 4 (12): e01035. Bibcode:2018Heliy...401035U. doi: 10.1016/j.heliyon.2018.e01035 . PMC   6299146 . PMID   30582051.
  17. "Rice concrete: characteristics and composition". concretersmelbourne.net. 5 March 2022. Retrieved 2022-10-10.
  18. Al-Gburi, Majid; Yusuf, Salim A. (2022). "Investigation of the effect of mineral additives on concrete strength using ANN". Asian Journal of Civil Engineering. 23 (3): 405–414. doi: 10.1007/s42107-022-00431-1 . S2CID   247428142.

Bibliography