Roman abacus

Last updated
A reconstruction of a Roman hand abacus, made by the RGZ Museum in Mainz, 1977. The original is bronze and is held by the Bibliotheque nationale de France, in Paris. This example is missing many counter beads. RomanAbacusRecon.jpg
A reconstruction of a Roman hand abacus, made by the RGZ Museum in Mainz, 1977. The original is bronze and is held by the Bibliothèque nationale de France, in Paris. This example is missing many counter beads.
Velser's reconstruction of Roman abacus (ca. 1600) Roman tablet employed in making arithmetical calculations (14781129921).jpg
Velser's reconstruction of Roman abacus (ca. 1600)

The Ancient Romans developed the Roman hand abacus , a portable, but less capable, base-10 version of earlier abacuses like those that were used by the Greeks and Babylonians. [1]

Contents

Origin

The Roman abacus was the first portable calculating device for engineers, merchants, and presumably tax collectors. It greatly reduced the time needed to perform the basic operations of arithmetic using Roman numerals.[ citation needed ]

Karl Menninger said:

For more extensive and complicated calculations, such as those involved in Roman land surveys, there was, in addition to the hand abacus, a true reckoning board with unattached counters or pebbles. The Etruscan cameo and the Greek predecessors, such as the Salamis Tablet and the Darius Vase, give us a good idea of what it must have been like, although no actual specimens of the true Roman counting board are known to be extant. But language, the most reliable and conservative guardian of a past culture, has come to our rescue once more. Above all, it has preserved the fact of the unattached counters so faithfully that we can discern this more clearly than if we possessed an actual counting board. What the Greeks called psephoi, the Romans called calculi. The Latin word calx means 'pebble' or 'gravel stone'; calculi are thus little stones (used as counters). [2]

Both the Roman abacus and the Chinese suanpan have been used since ancient times. With one bead above and four below the bar, the systematic configuration of the Roman abacus is comparable to the modern Japanese soroban, although the soroban was historically derived from the suanpan.[ citation needed ]

Layout

The Late Roman hand abacus shown here as a reconstruction contains seven longer and seven shorter grooves used for whole number counting, the former having up to four beads in each, and the latter having just one. The rightmost two grooves were for fractional counting. The abacus was made of a metal plate where the beads ran in slots. The size was such that it could fit in a modern shirt pocket.

| |    | |    | |    | |    | |    | |    | |    | | | |    | |    | |    | |    | |    | |    | |    | | |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|  |X|  CCC|ƆƆƆ CC|ƆƆ   C|Ɔ     C      X      I      Ө     | | ---    ---    ---    ---    ---    ---    ---    ---  S |O| | |    | |    | |    | |    | |    | |    | |    | | | |    | |    | |    | |    | |    | |    | |    | |    | | |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|  Ɔ  |O| |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|    | | |O|    |O|    |O|    |O|    |O|    |O|    |O|    |O|  2 |O|                                                  |O|    |O| 

The lower groove marked I indicates units, X tens, and so on up to millions. The beads in the upper shorter grooves denote fives (five units, five tens, etc.), resembling a bi-quinary coded decimal place value system.

Computations are made by means of beads which, we believe, would have been slid up and down the grooves to indicate the value of each column.

The upper slots contained a single bead while the lower slots contained four beads, the only exceptions being the two rightmost columns, column 2 marked Ө and column 1 with three symbols down the side of a single slot or beside three separate slots with Ɛ, 3 or S or a symbol like the £ sign but without the horizontal bar beside the top slot, a backwards C beside the middle slot and a 2 symbol beside the bottom slot, depending on the example abacus and the source which could be Friedlein, [3] Menninger [2] or Ifrah. [4] These latter two slots are for mixed-base math, a development unique to the Roman hand abacus [5] described in following sections.

The longer slot with five beads below the Ө position allowed for the counting of 1/12 of a whole unit called an uncia (from which the English words inch and ounce are derived), making the abacus useful for Roman measures and Roman currency. The first column was either a single slot with 4 beads or 3 slots with one, one and two beads respectively top to bottom. In either case, three symbols were included beside the single slot version or one symbol per slot for the three slot version. Many measures were aggregated by twelfths. Thus the Roman pound ('libra'), consisted of 12 ounces (unciae) (1 uncia = 28 grams). A measure of volume, congius , consisted of 12 heminae (1 hemina = 0.273 litres). The Roman foot (pes), was 12 inches (unciae) (1 uncia = 2.43 cm). The actus, the standard furrow length when plowing, was 120 pedes. There were however other measures in common use - for example the sextarius was two heminae.

The as , the principal copper coin in Roman currency, was also divided into 12 unciae. Again, the abacus was ideally suited for counting currency.

Symbols and usage

Alternative usages of the beads in the lower slot Abacus Usages.jpg
Alternative usages of the beads in the lower slot

The first column was arranged either as a single slot with three different symbols or as three separate slots with one, one and two beads or counters respectively and a distinct symbol for each slot. It is most likely that the rightmost slot or slots were used to enumerate fractions of an uncia and these were, from top to bottom, 1/2 s, 1/4 s and 1/12 s of an uncia. The upper character in this slot (or the top slot where the rightmost column is three separate slots) is the character most closely resembling that used to denote a semuncia or 1/24. The name semuncia denotes 1/2 of an uncia or 1/24 of the base unit, the As. Likewise, the next character is that used to indicate a sicilicus or 1/48 of an As, which is 1/4 of an uncia. These two characters are to be found in the table of Roman fractions on page 75 of Graham Flegg's [6] book. Finally, the last or lower character is most similar but not identical to the character in Flegg's table to denote 1/144 of an As, the dimidio sextula, which is the same as 1/12 of an uncia.

This is however even more strongly supported by Gottfried Friedlein [3] in the table at the end of the book which summarizes the use of a very extensive set of alternative formats for different values including that of fractions. In the entry in this table numbered 14 referring back to (Zu) 48, he lists different symbols for the semuncia (1/24), the sicilicus (1/48), the sextula (1/72), the dimidia sextula (1/144), and the scriptulum (1/288). Of prime importance, he specifically notes the formats of the semuncia, sicilicus and sextula as used on the Roman bronze abacus, "auf dem chernan abacus". The semuncia is the symbol resembling a capital "S", but he also includes the symbol that resembles a numeral three with horizontal line at the top, the whole rotated 180 degrees. It is these two symbols that appear on samples of abacus in different museums. The symbol for the sicilicus is that found on the abacus and resembles a large right single quotation mark spanning the entire line height.

The most important symbol is that for the sextula, which resembles very closely a cursive digit 2. Now, as stated by Friedlein, this symbol indicates the value of 1/72 of an As. However, he stated specifically in the penultimate sentence of section 32 on page 23, the two beads in the bottom slot each have a value of 1/72. This would allow this slot to represent only 1/72 (i.e. 1/6 × 1/12 with one bead) or 1/36 (i.e. 2/6 × 1/12 = 1/3 × 1/12 with two beads) of an uncia respectively. This contradicts all existing documents that state this lower slot was used to count thirds of an uncia (i.e. 1/3 and 2/3 × 1/12 of an As.

This results in two opposing interpretations of this slot, that of Friedlein and that of many other experts such as Ifrah, [4] and Menninger [2] who propose the one and two thirds usage.

There is however a third possibility.

If this symbol refers to the total value of the slot (i.e. 1/72 of an as), then each of the two counters can only have a value of half this or 1/144 of an as or 1/12 of an uncia. This then suggests that these two counters did in fact count twelfths of an uncia and not thirds of an uncia. Likewise, for the top and upper middle, the symbols for the semuncia and sicilicus could also indicate the value of the slot itself and since there is only one bead in each, would be the value of the bead also. This would allow the symbols for all three of these slots to represent the slot value without involving any contradictions.

A further argument which suggests the lower slot represents twelfths rather than thirds of an uncia is best described by the figure above. The diagram above assumes for ease that one is using fractions of an uncia as a unit value equal to one. If the beads in the lower slot of column I represent thirds, then the beads in the three slots for fractions of 1/12 of an uncia cannot show all values from 1/12 of an uncia to 11/12 of an uncia. In particular, it would not be possible to represent 1/12, 2/12 and 5/12. Furthermore, this arrangement would allow for seemingly unnecessary values of 13/12, 14/12 and 17/12. Even more significant, it is logically impossible for there to be a rational progression of arrangements of the beads in step with unit increasing values of twelfths. Likewise, if each of the beads in the lower slot is assumed to have a value of 1/6 of an uncia, there is again an irregular series of values available to the user, no possible value of 1/12 and an extraneous value of 13/12. It is only by employing a value of 1/12 for each of the beads in the lower slot that all values of twelfths from 1/12 to 11/12 can be represented and in a logical ternary, binary, binary progression for the slots from bottom to top. This can be best appreciated by reference to the figure below. Alternative usages of the beads in the lower slot

It can be argued that the beads in this first column could have been used as originally believed and widely stated, i.e. as ½, ¼ and ⅓ and ⅔, completely independently of each other. However this is more difficult to support in the case where this first column is a single slot with the three inscribed symbols. To complete the known possibilities, in one example found by this author, the first and second columns were transposed. It would not be unremarkable if the makers of these instruments produced output with minor differences, since the vast number of variations in modern calculators provide a compelling example.

What can be deduced from these Roman abacuses, is the undeniable proof that Romans were using a device that exhibited a decimal, place-value system, and the inferred knowledge of a zero value as represented by a column with no beads in a counted position. Furthermore, the biquinary-like nature of the integer portion allowed for direct transcription from and to the written Roman numerals. No matter what the true usage was, what cannot be denied by the very format of the abacus is that if not yet proven, these instruments provide very strong arguments in favour of far greater facility with practical mathematics known and practised by the Romans in this authors view.

The reconstruction of a Roman hand abacus in the Cabinet, [7] supports this. The replica Roman hand abacus at, [8] shown alone here, [9] plus the description of a Roman abacus on page 23 of Die Zahlzeichen und das elementare Rechnen der Griechen und Römer und des christlichen provides further evidence of such devices. [3]

Related Research Articles

<span class="mw-page-title-main">Abacus</span> Calculating tool

An abacus, also called a counting frame, is a hand-operated calculating tool which was used from ancient times in the ancient Near East, Europe, China, and Russia, until the adoption of the Hindu-Arabic numeral system. An abacus consists of a two-dimensional array of slidable beads. In their earliest designs, the beads could be loose on a flat surface or sliding in grooves. Later the beads were made to slide on rods and built into a frame, allowing faster manipulation.

<span class="mw-page-title-main">Roman numerals</span> Numbers in the Roman numeral system

Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, each letter with a fixed integer value. Modern style uses only these seven:

0 (zero) is a number representing an empty quantity. Adding 0 to any number leaves that number unchanged. In mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures. Multiplying any number by 0 has the result 0, and consequently, division by zero has no meaning in arithmetic.

<span class="mw-page-title-main">Babylonian cuneiform numerals</span> Numeral system

Babylonian cuneiform numerals, also used in Assyria and Chaldea, were written in cuneiform, using a wedge-tipped reed stylus to print a mark on a soft clay tablet which would be exposed in the sun to harden to create a permanent record.

A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one).

A numerical digit or numeral is a single symbol used alone or in combinations, to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits of the hands correspond to the ten symbols of the common base 10 numeral system, i.e. the decimal digits.

<span class="mw-page-title-main">Positional notation</span> Method for representing or encoding numbers

Positional notation usually denotes the extension to any base of the Hindu–Arabic numeral system. More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred. In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string.

The soroban is an abacus developed in Japan. It is derived from the ancient Chinese suanpan, imported to Japan in the 14th century. Like the suanpan, the soroban is still used today, despite the proliferation of practical and affordable pocket electronic calculators.

<span class="mw-page-title-main">Suanpan</span> Chinese abacus

The suanpan, also spelled suan pan or souanpan) is an abacus of Chinese origin first described in a 190 CE book of the Eastern Han Dynasty, namely Supplementary Notes on the Art of Figures written by Xu Yue. However, the exact design of this suanpan is not known. Usually, a suanpan is about 20 cm (8 in) tall and it comes in various widths depending on the application. It usually has more than seven rods. There are two beads on each rod in the upper deck and five beads on each rod in the bottom deck. The beads are usually rounded and made of a hardwood. The beads are counted by moving them up or down towards the beam. The suanpan can be reset to the starting position instantly by a quick jerk around the horizontal axis to spin all the beads away from the horizontal beam at the center.

Bead sort, also called gravity sort, is a natural sorting algorithm, developed by Joshua J. Arulanandham, Cristian S. Calude and Michael J. Dinneen in 2002, and published in The Bulletin of the European Association for Theoretical Computer Science. Both digital and analog hardware implementations of bead sort can achieve a sorting time of O(n); however, the implementation of this algorithm tends to be significantly slower in software and can only be used to sort lists of positive integers. Also, it would seem that even in the best case, the algorithm requires O(n2) space.

<span class="mw-page-title-main">Jeton</span> Coin-like counting token

Jetons or jettons are tokens or coin-like medals produced across Europe from the 13th through the 18th centuries. They were produced as counters for use in calculation on a counting board, a lined board similar to an abacus. Jetons for calculation were commonly used in Europe from about 1200 to 1700, and remained in occasional use into the early nineteenth century. They also found use as a money substitute in games, similar to modern casino chips or poker chips.

<span class="mw-page-title-main">Finger binary</span> Finger-counting system

Finger binary is a system for counting and displaying binary numbers on the fingers of either or both hands. Each finger represents one binary digit or bit. This allows counting from zero to 31 using the fingers of one hand, or 1023 using both: that is, up to 25−1 or 210−1 respectively.

The Hindu–Arabic numeral system is a decimal place-value numeral system that uses a zero glyph as in "205".

<span class="mw-page-title-main">Hindu–Arabic numeral system</span> Most common system for writing numbers

The Hindu–Arabic numeral system is a positional base ten numeral system for representing integers; its extension to non-integers is the decimal numeral system, which is presently the most common numeral system.

Number systems have progressed from the use of fingers and tally marks, perhaps more than 40,000 years ago, to the use of sets of glyphs able to represent any conceivable number efficiently. The earliest known unambiguous notations for numbers emerged in Mesopotamia about 5000 or 6000 years ago.

<span class="mw-page-title-main">Sand table</span> Table using constrained sand for modelling or educational purposes

A sand table uses constrained sand for modelling or educational purposes. The original version of a sand table may be the abax used by early Greek students. In the modern era, one common use for a sand table is to make terrain models for military planning and wargaming.

A numeral is a character that denotes a number. The decimal number digits 0–9 are used widely in various writing systems throughout the world, however the graphemes representing the decimal digits differ widely. Therefore Unicode includes 22 different sets of graphemes for the decimal digits, and also various decimal points, thousands separators, negative signs, etc. Unicode also includes several non-decimal numerals such as Aegean numerals, Roman numerals, counting rod numerals, Mayan numerals, Cuneiform numerals and ancient Greek numerals. There is also a large number of typographical variations of the Western Arabic numerals provided for specialized mathematical use and for compatibility with earlier character sets, such as ² or ②, and composite characters such as ½.

<span class="mw-page-title-main">Counting board</span> Early counting device

The counting board is the precursor of the abacus, and the earliest known form of a counting device. Counting boards were made of stone or wood, and the counting was done on the board with beads, pebbles etc. Not many boards survive because of the perishable materials used in their construction, or the impossibility to identify the object as a counting board.The counting board was invented to facilitate and streamline numerical calculations in ancient civilizations. Its inception addressed the need for a practical tool to perform arithmetic operations efficiently. By using counters or tokens on a board with designated sections, people could easily keep track of quantities, trade, and financial transactions. This invention not only enhanced accuracy but also fueled the development of more sophisticated mathematical concepts and systems throughout history.

<span class="mw-page-title-main">Counting rods</span>

Counting rods (筭) are small bars, typically 3–14 cm long, that were used by mathematicians for calculation in ancient East Asia. They are placed either horizontally or vertically to represent any integer or rational number.

<span class="mw-page-title-main">Salamis Tablet</span>

The Salamis Tablet is a marble counting board dating from around 300 BC, that was discovered on the island of Salamis in 1846. A precursor to the abacus, it is thought that it represents an ancient Greek means of performing mathematical calculations common in the ancient world. Pebbles were placed at various locations and could be moved as calculations were performed. The marble tablet itself has dimensions of approximately 150 × 75 × 4.5 cm.

References

  1. Sugden, Keith F. (Fall 1981). "A History of the Abacus". Accounting Historians Journal. 8 (2): 1–22. doi:10.2308/0148-4184.8.2.1.{{cite journal}}: CS1 maint: date and year (link)
  2. 1 2 3 Menninger, Karl (2013) [1969]. Number Words and Number Symbols: A Cultural History of Numbers. Dover Publications. p. 315. ISBN   978-0486319773.
  3. 1 2 3 Friedlein, Gottfried (1869). Die Zahlzeichen und das elementare rechnen der Griechen und Römer und des Christlichen Abendlandes vom 7. bis 13. Jahrhundert (in German). Erlangen.
  4. 1 2 Ifrah, Georges (1998). The Universal History of Numbers: From Prehistory to the Invention of the Computer. Vol. 1. Harvill. ISBN   1-86046-324-X.
  5. Stephenson, Steve. "The Roman Hand-Abacus" . Retrieved 2007-07-04.
  6. Flegg, Graham (1984). Numbers: Their History and Meaning. Penguin. ISBN   0-14-022564-1.
  7. des Médailles, Bibliothèque nationale
  8. "Abacus-Online-Museum of Jörn Lütjens". Archived from the original on 2016-03-27.{{cite web}}: CS1 maint: unfit URL (link)
  9. "Replica Roman Hand Abacus". Archived from the original on 2012-03-26.{{cite web}}: CS1 maint: unfit URL (link)

Further reading