Sarsasapogenin

Last updated
Sarsasapogenin
Sarsasapogenin.svg
Names
IUPAC name
(25S)-5β-Spirostan-3β-ol
Systematic IUPAC name
(2S,2′R,4aS,4bS,5′S,6aS,6bR,7S,9aS,10aS,10bR,12aR)-4a,5′,6a,7-Tetramethyloctadecahydrospiro[naphtho[2′,1′:4,5]indeno[2,1-b]furan-8,2′-oxan]-2-ol
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.004.343 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 204-776-3
PubChem CID
UNII
  • InChI=1S/C27H44O3/c1-16-7-12-27(29-15-16)17(2)24-23(30-27)14-22-20-6-5-18-13-19(28)8-10-25(18,3)21(20)9-11-26(22,24)4/h16-24,28H,5-15H2,1-4H3/t16-,17-,18+,19-,20+,21-,22-,23-,24-,25-,26-,27+/m0/s1
    Key: GMBQZIIUCVWOCD-WWASVFFGSA-N
  • InChI=1/C27H44O3/c1-16-7-12-27(29-15-16)17(2)24-23(30-27)14-22-20-6-5-18-13-19(28)8-10-25(18,3)21(20)9-11-26(22,24)4/h16-24,28H,5-15H2,1-4H3/t16-,17-,18+,19-,20+,21-,22-,23-,24-,25-,26-,27+/m0/s1
    Key: GMBQZIIUCVWOCD-WWASVFFGBR
  • C[C@H]1CC[C@@]2([C@H]([C@H]3[C@@H](O2)C[C@@H]4[C@@]3(CC[C@H]5[C@H]4CC[C@H]6[C@@]5(CC[C@@H](C6)O)C)C)C)OC1
Properties [1]
C27H44O3
Molar mass 416.64 g/mol
Melting point 199 to 199.5 °C (390.2 to 391.1 °F; 472.1 to 472.6 K)
Solubility in ethanol soluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sarsasapogenin is a steroidal sapogenin, that is the aglycosidic portion of a plant saponin. It is named after sarsaparilla ( Smilax sp.), [2] a family of climbing plants found in subtropical regions. It was one of the first sapogenins to be identified, [2] and the first spirostan steroid to be identified as such. [3] The identification of the spirostan structure, with its ketone spiro acetal functionality, was fundamental in the development of the Marker degradation, which allowed the industrial production of progesterone and other sex hormones from plant steroids.

Contents

Sarsasapogenin is unusual in that it has a cis-linkage between rings A and B of the steroid nucleus, as opposed to the more usual trans-linkage found in other saturated steroids. This 5β configuration is biologically significant, as a specific enzyme – sarsasapogenin 3β-glucosyltransferase – is found in several plants for the glycosylation of sarsasapogenin. [4] The (S)-configuration at C-25 is also in contrast to other spirostan sapogenins: the epimer with a (25R)-configuration is known as smilagenin.

Sarsasapogenin has been used as a starting material for the synthesis of other steroids. [5] It has also attracted pharmaceutical interest in its own right, [6] [7] [8] and is found in the rhizome of Anemarrhena asphodeloides , called zhī mǔ (知母) in traditional Chinese medicine, from which it is extracted commercially. [9]

Occurrence and isolation

Sarsasapogenin is found as a glycoside – with one or more sugar units attached to the hydroxyl group, known as a saponin – in the roots of many species of monocotyledonous plant, in particular: [7]

Smilacaceae

Asparagaceae

Agavaceae

The sarsasapogenin saponin can be extracted from the dried powdered root with 95% ethanol. After removal of the fat from the resulting gum, the glycosidic linkage is hydrolyzed with hydrochloric acid (approx. 2 M) and the resulting crude steroid is recrystallized from anhydrous acetone. The yield of pure sarsasapogenin from 225 kg of Smilax root is reported to be about 450 grams. [1]

History

Sarsasapogenin was first isolated in 1914 from Sarsaparilla root. [2] Although it was known to have three oxygen atoms, of which only one is a hydroxyl group, the structure of the side chain remained unclear for many years. Tschesche and Hagedorn proposed an unreactive double tetrahydrofuran structure based on degradation studies which indicated an ether oxygen atom attached to C-16. [10] The true nature of the side chain – a ketone spiro acetal – was discovered by Russell Marker in 1939, when he succeeded in opening the six-membered pyran ring with acetic anhydride. [3] Marker found that almost the entire side chain could be cleaved in three steps, a process now known as the Marker degradation.

Marker was able to convert sarsasapogenin into pregnane-3,20-diol [11] (a progesterone analogue) and testosterone. [12] However, for large scale production of steroid hormones, it proved more convenient to use diosgenin (extracted from the Mexican yam Dioscorea mexicana ) as the starting material, as it contains a double bond in the steroid nucleus. [13]

Pharmacological interest

Sarsasapogenin and its C-25 epimer smilagenin lowered blood sugar and reversed diabetic weight gain in experiments within mice with a mutant diabetes gene (db). [6] Both steroids also halted the decline in muscarinic acetylcholine receptors (mAChRs) in animal models of Alzheimer's disease. [7] [8] In both cases, the effects seem to be specific to the 5β-configuration, the cis-linkage between rings A and B, as diosgenin (with a Δ5 double bond which can be hydrogenated in the body) had much lower anti-diabetic activity [6] (and no significant effect on mAChRs [7] ) while tigogenin (the 5α-epimer of smilagenin) showed no effect at all in either study. [6] [7]

Related Research Articles

<span class="mw-page-title-main">Progesterone</span> Sex hormone

Progesterone (P4) is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens and is the major progestogen in the body. Progesterone has a variety of important functions in the body. It is also a crucial metabolic intermediate in the production of other endogenous steroids, including the sex hormones and the corticosteroids, and plays an important role in brain function as a neurosteroid.

<span class="mw-page-title-main">Steroid</span> Polycyclic organic compound having sterane as a core structure

A steroid is an organic compound with four fused rings arranged in a specific molecular configuration.

<span class="mw-page-title-main">Glycoside</span> Molecule in which a sugar is bound to another functional group

In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications. Several species of Heliconius butterfly are capable of incorporating these plant compounds as a form of chemical defense against predators. In animals and humans, poisons are often bound to sugar molecules as part of their elimination from the body.

Saponins, also selectively referred to as triterpene glycosides, are bitter-tasting usually toxic plant-derived organic chemicals that have a foamy quality when agitated in water. They are widely distributed but found particularly in soapwort, a flowering plant, the soapbark tree and soybeans. They are used in soaps, medicines, fire extinguishers, speciously as dietary supplements, for synthesis of steroids, and in carbonated beverages. Saponins are both water and fat soluble, which gives them their useful soap properties. Some examples of these chemicals are glycyrrhizin and quillaia, a bark extract used in beverages.

In chemistry, a nitrene or imene is the nitrogen analogue of a carbene. The nitrogen atom is uncharged and univalent, so it has only 6 electrons in its valence level—two covalent bonded and four non-bonded electrons. It is therefore considered an electrophile due to the unsatisfied octet. A nitrene is a reactive intermediate and is involved in many chemical reactions. The simplest nitrene, HN, is called imidogen, and that term is sometimes used as a synonym for the nitrene class.

Russell Earl Marker was an American chemist who invented the octane rating system when he was working at the Ethyl Corporation. Later in his career, he went on to found a steroid industry in Mexico when he successfully made semisynthetic progesterone from chemical constituents found in Mexican yams in a process known as Marker degradation. This eventually led to the development at Syntex of the combined oral contraceptive pill and synthetic cortisone – and to the development of the Mexican barbasco trade.

Dihydroxylation is the process by which an alkene is converted into a vicinal diol. Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal. The metal is often used as a catalyst, with some other stoichiometric oxidant present. In addition, other transition metals and non-transition metal methods have been developed and used to catalyze the reaction.

Oppenauer oxidation, named after Rupert Viktor Oppenauer, is a gentle method for selectively oxidizing secondary alcohols to ketones.

<span class="mw-page-title-main">Diosgenin</span> Chemical compound

Diosgenin, a phytosteroid sapogenin, is the product of hydrolysis by acids, strong bases, or enzymes of saponins, extracted from the tubers of Dioscorea wild yam species, such as the Kokoro. The sugar-free (aglycone) product of such hydrolysis, diosgenin is used for the commercial synthesis of cortisone, pregnenolone, progesterone, and other steroid products.

The Marker degradation is a three-step synthetic route in steroid chemistry developed by American chemist Russell Earl Marker in 1938–1940. It is used for the production of cortisone and mammalian sex hormones from plant steroids, and established Mexico as a world center for steroid production in the years immediately after World War II. The discovery of the Marker degradation allowed the production of substantial quantities of steroid hormones for the first time, and was fundamental in the development of the contraceptive pill and corticosteroid anti-inflammatory drugs. In 1999, the American Chemical Society and the Sociedad Química de México named the route as an International Historic Chemical Landmark.

In enzymology, a sarsasapogenin 3β-glucosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Osladin</span> Chemical compound

Osladine is a high-intensity sweetener isolated from the rhizome of Polypodium vulgare. It is a saponin, sapogenin steroid glycoside, 500 times sweeter than sucrose.

The nitrone-olefin [3+2] cycloaddition reaction is the combination of a nitrone with an alkene or alkyne to generate an isoxazoline or isoxazolidine via a [3+2] cycloaddition process. This reaction is a 1,3-dipolar cycloaddition, in which the nitrone acts as the 1,3-dipole, and the alkene or alkyne as the dipolarophile.

<span class="mw-page-title-main">Cholesterol total synthesis</span>

Cholesterol total synthesis in chemistry describes the total synthesis of the complex biomolecule cholesterol and is considered a great scientific achievement. The research group of Robert Robinson with John Cornforth published their synthesis in 1951 and that of Robert Burns Woodward with Franz Sondheimer in 1952. Both groups competed for the first publication since 1950 with Robinson having started in 1932 and Woodward in 1949. According to historian Greg Mulheirn the Robinson effort was hampered by his micromanagement style of leadership and the Woodward effort was greatly facilitated by his good relationships with chemical industry. Around 1949 steroids like cortisone were produced from natural resources but expensive. Chemical companies Merck & Co. and Monsanto saw commercial opportunities for steroid synthesis and not only funded Woodward but also provided him with large quantities of certain chemical intermediates from pilot plants. Hard work also helped the Woodward effort: one of the intermediate compounds was named Christmasterone as it was synthesized on Christmas Day 1950 by Sondheimer.

<i>Clerodendrum infortunatum</i> Species of flowering plant

Clerodendrum infortunatum, known as bhat or hill glory bower, is a perennial shrub belonging to the family Lamiaceae, also sometimes classified under Verbenaceae. It is the type species among ~150 species of Clerodendrum. It is one of the most well-known natural health remedies in traditional practices and siddha medicine.

<i>Smilax glabra</i> Species of flowering plant

Smilax glabra, sarsaparilla, is a plant species in the genus Smilax. It is native to China, the Himalayas, and Indochina.

<span class="mw-page-title-main">Mexican barbasco trade</span>

The Mexican barbasco trade was the trade of the diosgenin-rich yam species Dioscorea mexicana, Dioscorea floribunda and Dioscorea composita which emerged in Mexico in the 1950s as part of the Mexican steroid industry. The trade consisted in Mexican campesinos harvesting the root in the jungle, selling it to middlemen who brought it to processing plants where the root was fermented and the diosgenin extracted and sold to pharmaceutical companies such as Syntex who used it to produce synthetic hormones.

<i>Smilax aristolochiifolia</i> Species of flowering plant

Smilax aristolochiifolia, also known as gray sarsaparilla, Mexican sarsaparilla, sarsaparilla, is a species in the genus Smilax and the family Smilacaceae, native to Mexico and Central America. It is widely used as traditional medicine to treat many symptoms.

<span class="mw-page-title-main">16-Dehydropregnenolone acetate</span> Chemical compound

16-Dehydropregnenolone acetate (16-DPA) is a chemical compound used as an intermediate or synthon in the production of many semisynthetic steroids. As 7-ACA is for cephalosporins and 6-APA is for penicillins, 16-DPA is for steroids. While it is not easy to synthesize, it is a convenient intermediate which can be made from other more available materials, and which can then be modified to produce the desired target compound.

References

  1. 1 2 Jacobs, Walter A.; Simpson, James C. E. (1934), "On Sarsasapogenin and Gitogenin" (PDF), J. Biol. Chem. , 105 (3): 501–10, doi: 10.1016/S0021-9258(18)75520-8 .
  2. 1 2 3 Power, Frederick Belding; Salway, Arthur Henry (1914), "Chemical examination of sarsaparilla root", J. Chem. Soc., Trans. , 105: 201–19, doi:10.1039/CT9140500201 .
  3. 1 2 Marker, Russell E.; Rohrmann, Ewald (1939), "Sterols. LIII. The Structure of the Side Chain of Sarsasapogenin", J. Am. Chem. Soc., 61 (4): 846–51, doi:10.1021/ja01873a020 .
  4. Paczkowski, Cezary; Wojciechowski, Zdzisław A. (1988), "The occurrence of UDPG-dependent glucosyltransferase specific for sarsasapogenin in Asparagus officinalis", Phytochemistry, 27 (9): 2743–47, Bibcode:1988PChem..27.2743P, doi:10.1016/0031-9422(88)80654-X .
  5. US 4057543,Dryden, Jr., Hugh L.&Markos, Charles S.,"Process for the preparation of 17β-hydroxy-3-oxo-17α-pregn-4-ene-21-carboxylic acid γ-lactone",published 1977-11-08, assigned to G. D. Searle & Co. .
  6. 1 2 3 4 US 4680289,Applezweig, Norman,"Treatment of obesity and diabetes using sapogenins",published 1987-07-14, assigned to Progenics Inc..
  7. 1 2 3 4 5 US 6812213,Xia; Hu, Yaer& Rubin, Ianet al.,"Steroidal sapogenins and their derivatives for treating alzheimer's disease",published 2002-12-19, assigned to Phytopharm plc .
  8. 1 2 Hu, Yaer; Xia, Zongqin; Sun, Qixiang; Orsi, Antonia; Rees, Daryl (2005), "A new approach to the pharmacological regulation of memory: Sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-deficit rat models", Brain Research, 1060 (1–2): 26–39, doi:10.1016/j.brainres.2005.08.019, PMID   16226729, S2CID   20988167 .
  9. Sarsasapogenin (PDF), Wilshire Technologies, retrieved 2010-03-07.
  10. Tschesche, R.; Hagedorn, A. (1935), "Über neutrale Saponine, II. Mitteil.: Abbau eines Genins der neutralen Sapogenine zu einem Gallensäure-Derivat", Ber. Dtsch. Chem. Ges., 68 (7): 1412–20, doi:10.1002/cber.19350680736 .
  11. Marker, Russell E.; Rohrmann, Ewald (1939), "Sterols. LXXXI. Conversion of Sarsasapogenin to Pregnanediol-3(α),20(α)", J. Am. Chem. Soc., 61 (12): 3592–93, doi:10.1021/ja01267a513 . Marker, Russell E.; Rohrmann, Ewald (1940), "Sterols. LXXXVIII. Pregnanediols from Sarsasapogenin", J. Am. Chem. Soc., 62 (3): 518–20, doi:10.1021/ja01860a017 .
  12. Marker, Russell E. (1940), "Sterols. CV. The Preparation of Testosterone and Related Compounds from Sarsasapogenin and Diosgenin", J. Am. Chem. Soc., 62 (9): 2543–47, doi:10.1021/ja01866a077 .
  13. Marker, Russell E.; Tsukamoto, Takeo; Turner, D. L. (1940), "Sterols. C. Diosgenin", J. Am. Chem. Soc., 62 (9): 2525–32, doi:10.1021/ja01866a072 .