Sheet metal forming simulation

Last updated

Today the metal forming industry is making increasing use of simulation to evaluate the performing of dies, processes and blanks prior to building try-out tooling. Finite element analysis (FEA) is the most common method of simulating sheet metal forming operations to determine whether a proposed design will produce parts free of defects such as fracture or wrinkling. [1]

Contents

Sheet metal forming challenges

Sheet metal forming, which is often referred to as stamping, is a process in which a piece of sheet metal, referred to as the blank, is formed by stretching between a punch and a die.

The most painful and most frequent defects are wrinkles, thinning, springback and splits or cracks. Few methods are being used around the industry to cope with the main defects, based on the experience of the technicians. However, the correct process is the most vital, since it involves the correct geometry followed by number of steps to reach at final geometry. Which demands for specific experience or higher number of iterations. [2]

Deformation of the blank is typically limited by buckling, wrinkling, tearing, and other negative characteristics which makes it impossible to meet quality requirements or makes it necessary to run at a slower than desirable rate.

Wrinkling in a draw are series of ridges form radially in the drawn wall due to compressive buckling. Practically these are duo to low blank holder pressure due to which material slips and wrinkles formed. The optimum blank holding pressure is the key, however in certain cases it doesn't work. Then draw beads are the solutions, the location and shape of draw bead is the challenge, which can be analysed with FEA during design stage prior to tool manufacturing. [2]

Crack in the vertical wall due to high tensile stresses, some small radius block the material flow and results in excessive thinning at that point usually more than 40% of the sheet thk. result in cracks. In some cases it may happen due to excessive blank holder pressure, which restrict the metal flow. Somewhere it might be due to wrong process design, like try to make a more deep draws in a single stage, which otherwise feasible only in two stages. [2]

Thinning is a Excessive Stretching in the vertical wall due to high tensile stresses cause thickness reduction specifically on the small radius in the metal parts, however up to 20% thinning is allowed due to process limitations. [2]

Springback is a particularly critical aspect of sheet metal forming. Even relatively small amounts of springback in structures that are formed to a significant depth may cause the blank to distort to the point that tolerances cannot be held. New materials such as high strength steel, aluminum and magnesium are particularly prone to springback. [3]

Sheet metal forming is more of an art than a science. The design of the tooling, stamping process and blank materials and geometry are primarily done by trial and error.

Nowadays the simulation software's comes under CAE (computer aided engineering), used the finite element analysis to predict the common defects in design stage, prior to die manufacturing. [2]

The traditional approach to designing the punch and die to produce parts successfully is to build try-out tools to check the ability of a certain tool design to produce parts of the required quality. Try-out tools are typically made of less expensive materials to reduce try-out costs yet this method is still costly and time-consuming. [4]

History of sheet metal forming simulation

The first effort at simulating metalforming was made using the finite difference method in the 1960s to better understand the deep drawing process. Simulation accuracy was later increased by applying nonlinear finite element analysis in the 1980s but computing time was too long at this time to apply simulation to industrial problems.[ citation needed ]

Rapid improvements over the past few decades in computer hardware have made the finite element analysis method practical for resolving real-world metal forming problems. A new class of FEA codes based on explicit time integration was developed that reduced computational time and memory requirements. The dynamic explicit FEA approach uses a central different explicit scheme to integrate the equations of motion. This approach uses lumped mass matrices and a typical time step on order of millionths of seconds. The method has proved to be robust and efficient for typical industrial problems.[ citation needed ]

As computer hardware and operating systems have evolved, memory limitations that prevented the practical use of Implicit Finite Element Methods had been overcome. [5] Using the implicit method time steps are computed based on the predicted amount of deformation occurring at a given moment in the simulation, thus preventing unnecessary computational inefficiency caused by computing too small time steps when nothing is happening or too large a time step when high amounts of deformation are occurring.

Finite Element Analysis Methods

Two broad divisions in the application of Finite Element Analysis method for sheet metal forming can be identified as Inverse One-step and Incremental.

Inverse One-step methods compute the deformation potential of a finished part geometry to the flattened blank. Mesh initially with the shape and material characteristics of the finished geometry is deformed to the flat pattern blank. The strain computed in this inverse forming operation is then inverted to predict the deformation potential of the flat blank being deformed into the final part shape. All the deformation is assumed to happen in one increment or step and is the inverse of the process which the simulation is meant to represent, thus the name Inverse One-Step.

Incremental Analysis methods start with the mesh of the flat blank and simulate the deformation of the blank inside of tools modeled to represent a proposed manufacturing process. This incremental forming is computed "forward" from initial shape to final, and is calculated over a number of time increments for start to finish. The time increments can be either explicitly or implicitly defined depending on the finite element software being applied. As the incremental methods include the model of the tooling and allow for the definition of boundary conditions which more fully replicate the manufacturing proposal, incremental methods are more commonly used for process validation. Inverse One-step with its lack of tooling and therefore poor representation of process is limited to geometry based feasibility checks. [6]

Incremental analysis has filled the role previously completed through the use of proof tools or prototype tools. Proof tools in the past were short run dies made of softer than normal material, which were used to plan and test the metal forming operations. This process was very time consuming and did not always yield beneficial results, as the soft tools were very different in their behavior than the longer running production tools. Lessons learned on the soft tools did not transfer to the hard tool designs. Simulation has for the most part displaced this old method. Simulation used as a virtual tryout is a metal forming simulation based on a specific set of input variables, sometimes nominal, best case, worst case, etc. However, any simulation is only as good as the data used to generate the predictions. When a simulation is seen as a "passing result" manufacturing of the tool will often begin in earnest. But if the simulation results are based on an unrealistic set of production inputs then its value as an engineering tool is suspect.

Robustness Analysis

Recent innovations in stochastic analysis applied to sheet metal forming simulations has enabled early adopters to engineer repeat-ability into their processes that might not be found if they are using single sets of simulations as "virtual tryout". [7]

Uses of sheet metal forming simulation

Chaboche type material models are sometimes used to simulate springback effects in sheet metal forming. These and other advanced plasticity models require the experimental determination of cyclic stress-strain curves. Test rigs have been used to measure material properties that when used in simulations provide excellent correlation between measured and calculated springback. [8]

Many metal forming operation require too much deformation of the blank to be performed in a single step. Multistep or progressive stamping operations are used to incrementally form the blank into the desired shape through a series of stamping operations. Incremental forming simulation software platforms addresses these operations with a series of one-step stamping operations that simulate the forming process one step at a time. [9]

Progressive strip simulated thinning, AutoForm.jpg

Another common goal in design of metal forming operations is to design the shape of the initial blank so that the final formed part requires few or no cutting operations to match the design geometry. The blank shape can also be optimized with finite element simulations. One approach is based on an iterative procedure that begins with an approximate starting geometry, simulates the forming process and then checks deviation of the resulting formed geometry from the ideal product geometry. The node points are adjusted in accordance with the displacement filed to correct the blank edge geometry. This process is continued until the end blank shape matches the as-designed part geometry. [10]

Metal forming simulation offers particular advantages in the case of high strength steel and advanced high-strength steel which are used in current day automobiles to reduce weight while maintaining crash safety of the vehicle. The materials have higher yield and tensile strength than conventional steel so the die undergoes greater deformation during the forming process which in turn increases the difficulty of designing the die. Sheet metal simulation that considers the deformation of not only the blank but also the die can be used to design tools to successfully form these materials. [11]

Industrial applications

Tata Motors engineers used metal forming simulation to develop tooling and process parameters for producing a new oil pump design. The first prototypes that were produced closed matched the simulation prediction. [12]

Nissan Motor Company used metal forming simulation to address a tearing problem in a metal stamping operation. A simple simulation model was created to determine the effect of blank edge radius on the height to which the material could be formed without tearing. Based on this information a new die was designed that solved the problem. [13]

There are lots of sheet metal programs available in the industry as SolidWorks and LITIO. [14] For high strength aluminium structures in 2x, 6x and 7x series grades, novel simulation algorithms [15] have been developed via the Hot Form Quench (HFQ) technology platform, supported by a extensive library of alloy material cards; being then applied for the production of lightweight body-in-white, electric vehicle battery enclosures and aerospace structures.

Nowadays FEA software's such as LS DYNA, AUTOFORM, HYPERFORM, PAMSTAMP are very good for virtual process simulations prior to product manufacturing. The defects such as Wrinkles, thinning and cracks can be seen in the design stage right just before the process design, results in correct process selection and reduction in lead time and save valuable money, which otherwise invested in hectic manufacturing iterations. [16]

Related Research Articles

<span class="mw-page-title-main">LS-DYNA</span>

LS-DYNA is an advanced general-purpose multiphysics simulation software package developed by the former Livermore Software Technology Corporation (LSTC), which was acquired by Ansys in 2019. While the package continues to contain more and more possibilities for the calculation of many complex, real world problems, its origins and core-competency lie in highly nonlinear transient dynamic finite element analysis (FEA) using explicit time integration. LS-DYNA is used by the automobile, aerospace, construction and civil engineering, military, manufacturing, and bioengineering industries.

<span class="mw-page-title-main">Electromagnetic forming</span>

Electromagnetic forming is a type of high-velocity, cold forming process for electrically conductive metals, most commonly copper and aluminium. The workpiece is reshaped by high-intensity pulsed magnetic fields that induce a current in the workpiece and a corresponding repulsive magnetic field, rapidly repelling portions of the workpiece. The workpiece can be reshaped without any contact from a tool, although in some instances the piece may be pressed against a die or former. The technique is sometimes called high-velocity forming or electromagnetic pulse technology.

<span class="mw-page-title-main">Physics engine</span> Software for approximate simulation of physical systems

A physics engine is computer software that provides an approximate simulation of certain physical systems, such as rigid body dynamics, soft body dynamics, and fluid dynamics, of use in the domains of computer graphics, video games and film (CGI). Their main uses are in video games, in which case the simulations are in real-time. The term is sometimes used more generally to describe any software system for simulating physical phenomena, such as high-performance scientific simulation.

<span class="mw-page-title-main">Sheet metal</span> Metal formed into thin, flat pieces

Sheet metal is metal formed into thin, flat pieces, usually by an industrial process.

<span class="mw-page-title-main">Hydroforming</span> Method of shaping metal through pressurized water

Hydroforming is a cost-effective way of shaping ductile metals such as aluminium, brass, low alloy steel, and stainless steel into lightweight, structurally stiff and strong pieces. One of the largest applications of hydroforming is the automotive industry, which makes use of the complex shapes made possible by hydroforming to produce stronger, lighter, and more rigid unibody structures for vehicles. This technique is particularly popular with the high-end sports car industry and is also frequently employed in the shaping of aluminium tubes for bicycle frames.

<span class="mw-page-title-main">Mesh generation</span> Subdivision of space into cells

Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.

<span class="mw-page-title-main">Crash simulation</span> Virtual recreation of a destructive car crash

A crash simulation is a virtual recreation of a destructive crash test of a car or a highway guard rail system using a computer simulation in order to examine the level of safety of the car and its occupants. Crash simulations are used by automakers during computer-aided engineering (CAE) analysis for crashworthiness in the computer-aided design (CAD) process of modelling new cars. During a crash simulation, the kinetic energy, or energy of motion, that a vehicle has before the impact is transformed into deformation energy, mostly by plastic deformation (plasticity) of the car body material, at the end of the impact.

<span class="mw-page-title-main">Stamping (metalworking)</span> Forming metal sheets with a stamping press

Stamping is the process of placing flat sheet metal in either blank or coil form into a stamping press where a tool and die surface forms the metal into a net shape. Stamping includes a variety of sheet-metal forming manufacturing processes, such as punching using a machine press or stamping press, blanking, embossing, bending, flanging, and coining. This could be a single stage operation where every stroke of the press produces the desired form on the sheet metal part, or could occur through a series of stages. The process is usually carried out on sheet metal, but can also be used on other materials, such as polystyrene. Progressive dies are commonly fed from a coil of steel, coil reel for unwinding of coil to a straightener to level the coil and then into a feeder which advances the material into the press and die at a predetermined feed length. Depending on part complexity, the number of stations in the die can be determined.

<span class="mw-page-title-main">Deep drawing</span> Metalworking process

Deep drawing is a sheet metal forming process in which a sheet metal blank is radially drawn into a forming die by the mechanical action of a punch. It is thus a shape transformation process with material retention. The process is considered "deep" drawing when the depth of the drawn part exceeds its diameter. This is achieved by redrawing the part through a series of dies.

In metallurgy, cold forming or cold working is any metalworking process in which metal is shaped below its recrystallization temperature, usually at the ambient temperature. Such processes are contrasted with hot working techniques like hot rolling, forging, welding, etc. The same or similar terms are used in glassmaking for the equivalents; for example cut glass is made by "cold work", cutting or grinding a formed object.

<span class="mw-page-title-main">Shear forming</span>

Shear forming, also referred as shear spinning, is similar to metal spinning. In shear spinning the area of the final piece is approximately equal to that of the flat sheet metal blank. The wall thickness is maintained by controlling the gap between the roller and the mandrel. In shear forming a reduction of the wall thickness occurs.

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

A forming limit diagram, also known as a forming limit curve, is used in sheet metal forming for predicting forming behavior of sheet metal. The diagram attempts to provide a graphical description of material failure tests, such as a punched dome test.

Formability is the ability of a given metal workpiece to undergo plastic deformation without being damaged. The plastic deformation capacity of metallic materials, however, is limited to a certain extent, at which point, the material could experience tearing or fracture (breakage).

<span class="mw-page-title-main">ESI Group</span>

ESI Group provides virtual prototyping software that simulates a product's behavior during testing, manufacturing and real-life use. Engineers in a variety of industries use its software to evaluate the performance of proposed designs in the early phases of the project with the goal of identifying and eliminating potential design flaws.

<span class="mw-page-title-main">VisualFEA</span>

VisualFEA is a finite element analysis software program for Microsoft Windows and Mac OS X. It is developed and distributed by Intuition Software, Inc. of South Korea, and used chiefly for structural and geotechnical analysis. Its strongest point is its intuitive, user-friendly design based on graphical pre- and postprocessing capabilities. It has educational features for teaching and learning structural mechanics, and finite element analysis through graphical simulation. It is widely used in college-level courses related to structural mechanics and finite element methods.

Press tools are commonly used in hydraulic, pneumatic, and mechanical presses to produce the sheet metal components in large volumes. Generally press tools are categorized by the types of operation performed using the tool, such as blanking, piercing, bending, forming, forging, trimming etc. The press tool will also be specified as a blanking tool, piercing tool, bending tool etc.

Spring Back Compensation occurs due to the plastic-elastic characteristic of a metal, because it is typical that any deformation of sheet metal at room temperature will have both elastic and plastic deformation. After the metal workpiece is removed from the tool or deformation implement, the elastic deformation will be released and only the plastic deformation will remain. When a metal forming tool is planned and designed to deform a workpiece, the shape imparted by the tool will be a combination of elastic and plastic deformation. The release of the elastic deformation is the spring back often observed at the end of a metal forming process. The spring back has to be compensated to achieve an accurate result.

<span class="mw-page-title-main">Metal casting simulation</span>

Casting process simulation is a computational technique used in industry and metallurgy to model and analyze the metal-casting process. This technology allows engineers to predict and visualize the flow of molten metal, crystallization patterns, and potential defects in the casting before the start of the actual production process. By simulating the casting process, manufacturers can optimize mould design, reduce material consumption, and improve the quality of the final product.

References

  1. Taylan Altan, Erman Tekkaya, “Sheet Metal Forming: Processes and Applications,” Chapter 3: Process Simulation,” Manan Shah, Partchapol Sartkulvanich, August 31, 2012.
  2. 1 2 3 4 5 Kumar, Rakesh (2021). "How to choose number of Draw process for deep drawn geometry" . Retrieved 2021-11-25.
  3. Winfried Schmitt, Oleg Benevolenski, Tom Walde, Andriy Krasowsky, “Material Characterization for Simulation of Sheet Metal Forming,” VIII International Conference on Computational Plasticity (COMPLAS VIII), Barcelona, 2005.
  4. A. Anderssson, “Comparison of sheet-metal-forming simulation and try-out tools in the design of a forming tool,” Journal of Engineering Design, Vol. 15, No. 3, 2004.
  5. W. Kubli, J. Reissner, "Optimization of sheet-metal forming processes using the special-purpose program AUTOFORM,"
  6. D. Banabic et al "Sheet Metal Forming Processes, Constitutive Modelling and Numerical Simulation", 2010, pages 218–230.
  7. Anders Skogsgårdh, http://www.autoform.com/en/products/solution-tryout-part-production/application-examples-tryout-part-production/ Volvo Cars Manufacturing Engineering
  8. Winfried Schmitt, Oleg Benevolenski, Tom Walde, Andriy Krasowsky, “Material Characterization for Simulation of Sheet Metal Forming,” VIII International Conference on Computational Plasticity (COMPLAS VIII), Barcelona, 2005.
  9. Tim Stephens, “Incremental Forming Simulation Software,” Metal Forming Magazine, June 2013.
  10. Nikolaj Mole, Gasper Cafuta, Boris Stok, “A Method for Optimal Blank Shape Determination in Sheet Metal Forming Based on Numerical Simulation,” Journal of Mechanical Engineering, Volume 59, Issue 4, Pages 237–250, 2013.
  11. K.Y. Choi, M.G. Lee, H.Y. Kim, “Sheet metal forming simulation considering die deformation,” International Journal of Automotive Technology, December 2013, Volume 14, Issue 6, pages 935–940.
  12. Simulation for Steel Stamping,” Automotive Design and Production, March 30, 2011.
  13. A. Makinouchi, “Sheet metal forming simulation in industry,” Journal of Materials Processing Technology, Issue 60, 1996, Pages 19–26.
  14. Lisa Iwamoto, Digital Fabrications: Architectural and Material Techniques”.
  15. Mohamed, M; Szegda, D; Swift, J; Gaines, O; Ling, D; Sonntag, M; Güner, A (2023-06-01). "Process optimisation and robustness analysis for HFQ process". IOP Conference Series: Materials Science and Engineering. 1284 (1): 012063. Bibcode:2023MS&E.1284a2063M. doi: 10.1088/1757-899x/1284/1/012063 . ISSN   1757-8981.
  16. KUMAR, RAKESH (2020). "Forming Limit Diagram (FLD) OR Forming Limit Curve (FLC)".