Sodium fusion test

Last updated

The sodium fusion test, or Lassaigne's test, is used in elemental analysis for the qualitative determination of the presence of foreign elements, namely halogens, nitrogen, and sulfur, in an organic compound. It was developed by J. L. Lassaigne. [1]

Contents

The test involves heating the sample with sodium metal, "fusing" it with the sample. A variety of techniques has been described. The "fused" sample is plunged into water, and the qualitative tests are performed on the resultant solution for the respective possible constituents. [2] [3]

Theory

The halogens, nitrogen, and sulfur are covalently bonded to the organic compounds are converted to various sodium salts formed during the fusion. Typically proposed reactions are:

Na + C + N → NaCN
Na + C + N + S → NaSCN
2Na + S → Na2S
Na + X → NaX

The fate of the hydrocarbon portion of the sample is disregarded.

The aqueous extract is called sodium fusion extract or Lassaigne's extract.

Test for nitrogen

The sodium fusion extract is made alkaline by adding NaOH. To this mixture, freshly prepared FeSO4 solution is added and boiled for sometimes and then cooled. A few drops of FeCl3 are added and Prussian blue (bluish green) color forms due to formation of ferric ferrocyanide along with NaCl. This shows the presence of nitrogen in the organic compound. [4]

Test for sulfur

Lead acetate test

The sodium fusion extract is acidified with acetic acid and lead acetate is added to it. A black precipitate of lead sulfide indicates the presence of sulfur.i

Sodium nitroprusside test

Freshly prepared sodium nitroprusside solution is added to the sodium fusion extract, turning the solution deep violet due to formation of sodium thionitroprusside. [4]

In case, both nitrogen and sulfur are present in an organic compound, sodium thiocyanate is formed which gives blood red color since there are no free cyanide ions.

Test for halogens

The sodium fusion extract is boiled with concentrated HNO3 followed by the addition of AgNO3 solution which yields a white (AgCl) or yellow (AgBr or AgI) precipitate if halogen is present. [4]

Test for phosphorus

Sodium peroxide is added to the compound to oxidise phosphorus to sodium phosphate. It is boiled with concentrated HNO3 and then ammonium molybdate is added. A yellow precipitate (ammonium phosphomolybdate) indicates the presence of phosphorus.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction between an acid and a base

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

<span class="mw-page-title-main">Cyanide</span> Any molecule with a cyano group (–C≡N)

In chemistry, a cyanide is a chemical compound that contains a C≡N functional group. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom.

<span class="mw-page-title-main">Hydride</span> Molecule with a hydrogen bound to a more electropositive element or group

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are also called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

The nitrophosphate process is a method for the industrial production of nitrogen fertilizers invented by Erling Johnson in the municipality of Odda, Norway around 1927.

<span class="mw-page-title-main">Thiocyanate</span> Ion (S=C=N, charge –1)

Thiocyanates are salts containing the thiocyanate anion [SCN]. [SCN] is the conjugate base of thiocyanic acid. Common salts include the colourless salts potassium thiocyanate and sodium thiocyanate. Mercury(II) thiocyanate was formerly used in pyrotechnics.

<span class="mw-page-title-main">Silver chloride</span> Chemical compound with the formula AgCl

Silver chloride is an inorganic chemical compound with the chemical formula AgCl. This white crystalline solid is well known for its low solubility in water and its sensitivity to light. Upon illumination or heating, silver chloride converts to silver, which is signaled by grey to black or purplish coloration in some samples. AgCl occurs naturally as the mineral chlorargyrite.

Pseudohalogens are polyatomic analogues of halogens, whose chemistry, resembling that of the true halogens, allows them to substitute for halogens in several classes of chemical compounds. Pseudohalogens occur in pseudohalogen molecules, inorganic molecules of the general forms PsPs or Ps–X, such as cyanogen; pseudohalide anions, such as cyanide ion; inorganic acids, such as hydrogen cyanide; as ligands in coordination complexes, such as ferricyanide; and as functional groups in organic molecules, such as the nitrile group. Well-known pseudohalogen functional groups include cyanide, cyanate, thiocyanate, and azide.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

In chemistry, disproportionation, sometimes called dismutation, is a redox reaction in which one compound of intermediate oxidation state converts to two compounds, one of higher and one of lower oxidation states. The reverse of disproportionation, such as when a compound in an intermediate oxidation state is formed from precursors of lower and higher oxidation states, is called comproportionation, also known as synproportionation.

Jean Louis Lassaigne was a French chemist. He is best known for the sodium fusion test named after him.

In chemistry, molecular autoionization is a chemical reaction between molecules of the same substance to produce ions. If a pure liquid partially dissociates into ions, it is said to be self-ionizing. In most cases the oxidation number on all atoms in such a reaction remains unchanged. Such autoionization can be protic, or non-protic.

A salt metathesis reaction is a chemical process involving the exchange of bonds between two reacting chemical species which results in the creation of products with similar or identical bonding affiliations. This reaction is represented by the general scheme:

<span class="mw-page-title-main">Sodium sulfide</span> Chemical compound

Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, an extremely toxic, flammable and corrosive gas which smells like rotten eggs.

<span class="mw-page-title-main">Silver carbonate</span> Chemical compound

Silver carbonate is the chemical compound with the formula Ag2CO3. This salt is yellow but typical samples are grayish due to the presence of elemental silver. It is poorly soluble in water, like most transition metal carbonates.

<span class="mw-page-title-main">Mercury(II) thiocyanate</span> Chemical compound

Mercury(II) thiocyanate (Hg(SCN)2) is an inorganic chemical compound, the coordination complex of Hg2+ and the thiocyanate anion. It is a white powder. It will produce a large, winding "snake" when ignited, an effect known as the Pharaoh's serpent.

<span class="mw-page-title-main">Sodium thiocyanate</span> Chemical compound

Sodium thiocyanate (sometimes called sodium sulphocyanide) is the chemical compound with the formula NaSCN. This colorless deliquescent salt is one of the main sources of the thiocyanate anion. As such, it is used as a precursor for the synthesis of pharmaceuticals and other specialty chemicals. Thiocyanate salts are typically prepared by the reaction of cyanide with elemental sulfur:

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

References

  1. Lassaigne (1843) "Mémoire sur un procédé simple pour constater la présence de l'azote dans des quantités minimes de matière organique" [Memoir on a simple procedure for confirming the presence of nitrogen in minimal quantities of organic matter], Comptes rendus,16 : 387-391.
  2. Gower, R. P.; Rhodes, I. P. (1969). "A review of techniques in the Lassaigne sodium-fusion". Journal of Chemical Education . 46 (9): 606. Bibcode:1969JChEd..46..606G. doi:10.1021/ed046p606.
  3. Gower, R. P.; Rhodes, I. P. (1969). "A Review of Techniques in the Lassaigne Sodium-Fusion". Journal of Chemical Education. 46 (9): 606. Bibcode:1969JChEd..46..606G. doi:10.1021/ed046p606.
  4. 1 2 3 Tucker, S. Horwood (1945-05-01). "A lost centenary: Lassaigne's test for nitrogen. The identification of nitrogen, sulfur, and halogens in organic compounds". Journal of Chemical Education. 22 (5): 212. Bibcode:1945JChEd..22..212T. doi:10.1021/ed022p212. ISSN   0021-9584.