Software design pattern

Last updated

In software engineering, a design pattern describes a relatively small, well-defined aspect (i.e. functionality) of a computer program in terms of how to write the code.

Contents

Using a pattern is intended to leverage an existing concept rather than re-inventing it. This can decrease the time to develop software and increase the quality of the resulting program.

Notably, a pattern does not consist of a software artifact. Most development resources that a programmer uses involve configuring the codebase to use an artifact such as a library (to name just one example). In contrast, to use a pattern, a programmer writes code as described by the pattern. The result is unique every time even though the result may be recognizable as based on the pattern.

Some consider using patterns to be best practice for software design. Some consider using design patterns as a structured approach to computer programming.

Conceptually, design pattern may be described as more specific than programming paradigm and less specific than algorithm.

History

Patterns originated as an architectural concept by Christopher Alexander as early as 1977 (c.f. "The Pattern of Streets," JOURNAL OF THE AIP, September, 1966, Vol. 32, No. 5, pp. 273–278). In 1987, Kent Beck and Ward Cunningham began experimenting with the idea of applying patterns to programming – specifically pattern languages – and presented their results at the OOPSLA conference that year. [1] [2] In the following years, Beck, Cunningham and others followed up on this work.

Design patterns gained popularity in computer science after the book Design Patterns: Elements of Reusable Object-Oriented Software was published in 1994 by the so-called "Gang of Four" (Gamma et al.), which is frequently abbreviated as "GoF". That same year, the first Pattern Languages of Programming Conference was held, and the following year the Portland Pattern Repository was set up for documentation of design patterns. The scope of the term remains a matter of dispute. Notable books in the design pattern genre include:

Although design patterns have been applied practically for a long time, formalization of the concept of design patterns languished for several years. [3]

Practice

Design patterns can speed up the development process by providing proven development paradigms. [4] Effective software design requires considering issues that may not become apparent until later in the implementation. Freshly written code can often have hidden, subtle issues that take time to be detected; issues that sometimes can cause major problems down the road. Reusing design patterns can help to prevent such issues, [5] and enhance code readability for those familiar with the patterns.

Software design techniques are difficult to apply to a broader range of problems.[ citation needed ] Design patterns provide general solutions, documented in a format that does not require specifics tied to a particular problem.

Motif

A pattern describes a design motif, a.k.a. prototypical micro-architecture, as a set of program constituents (e.g., classes, methods...) and their relationships. A developer adapts the motif to their codebase to solve the problem described by the pattern. The resulting code has structure and organization similar to the chosen motif.

Domain-specific patterns

Efforts have also been made to codify design patterns in particular domains, including the use of existing design patterns as well as domain-specific design patterns. Examples include user interface design patterns, [6] information visualization, [7] secure design, [8] "secure usability", [9] Web design [10] and business model design. [11]

The annual Pattern Languages of Programming Conference proceedings [12] include many examples of domain-specific patterns.

Object-oriented programming

Object-oriented design patterns typically show relationships and interactions between classes or objects, without specifying the final application classes or objects that are involved. Patterns that imply mutable state may be unsuited for functional programming languages. Some patterns can be rendered unnecessary in languages that have built-in support for solving the problem they are trying to solve, and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Examples

Design patterns can be organized into groups based on what kind of problem they solve. Creational patterns create objects. Structural patterns organize classes and objects to form larger structures that provide new functionality. Behavioral patterns provide communication between objects and realizing these patterns.

Creational patterns

NameDescriptionIn Design Patterns In Code Complete [13] Other
Abstract factory Provide an interface for creating families of related or dependent objects without specifying their concrete classes.YesYes
Builder Separate the construction of a complex object from its representation, allowing the same construction process to create various representations.YesYes
Dependency Injection A class accepts the objects it requires from an injector instead of creating the objects directly.Yes
Factory method Define an interface for creating a single object, but let subclasses decide which class to instantiate. Factory Method lets a class defer instantiation to subclasses.YesYes
Lazy initialization Tactic of delaying the creation of an object, the calculation of a value, or some other expensive process until the first time it is needed. This pattern appears in the GoF catalog as "virtual proxy", an implementation strategy for the Proxy pattern.YesYesPoEAA [14]
Multiton Ensure a class has only named instances, and provide a global point of access to them.YesYesYes
Object pool Avoid expensive acquisition and release of resources by recycling objects that are no longer in use. Can be considered a generalisation of connection pool and thread pool patterns.YesYesYes
Prototype Specify the kinds of objects to create using a prototypical instance, and create new objects from the 'skeleton' of an existing object, thus boosting performance and keeping memory footprints to a minimum.YesYesYes
Resource acquisition is initialization (RAII)Ensure that resources are properly released by tying them to the lifespan of suitable objects.YesYesYes
Singleton Ensure a class has only one instance, and provide a global point of access to it.YesYesYes

Structural patterns

NameDescriptionIn Design Patterns In Code Complete [13] Other
Adapter, Wrapper, or TranslatorConvert the interface of a class into another interface clients expect. An adapter lets classes work together that could not otherwise because of incompatible interfaces. The enterprise integration pattern equivalent is the translator.YesYesYes
Bridge Decouple an abstraction from its implementation allowing the two to vary independently.YesYesYes
Composite Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat individual objects and compositions of objects uniformly.YesYesYes
Decorator Attach additional responsibilities to an object dynamically keeping the same interface. Decorators provide a flexible alternative to subclassing for extending functionality.YesYesYes
Delegation Extend a class by composition instead of subclassing. The object handles a request by delegating to a second object (the delegate)YesYesYes
Extension objectAdding functionality to a hierarchy without changing the hierarchy.YesYesYes
Facade Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level interface that makes the subsystem easier to use.YesYesYes
Flyweight Use sharing to support large numbers of similar objects efficiently.YesYesYes
Front controller The pattern relates to the design of Web applications. It provides a centralized entry point for handling requests.YesYes

J2EE Patterns [15] PoEAA [16]

Marker Empty interface to associate metadata with a class.YesYes Effective Java [17]
Module Group several related elements, such as classes, singletons, methods, globally used, into a single conceptual entity.YesYesYes
Proxy Provide a surrogate or placeholder for another object to control access to it.YesYesYes
Twin [18] Twin allows modeling of multiple inheritance in programming languages that do not support this feature.YesYesYes

Behavioral patterns

NameDescriptionIn Design Patterns In Code Complete [13] Other
Blackboard Artificial intelligence pattern for combining disparate sources of data (see blackboard system)YesYesYes
Chain of responsibility Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the request. Chain the receiving objects and pass the request along the chain until an object handles it.YesYesYes
Command Encapsulate a request as an object, thereby allowing for the parameterization of clients with different requests, and the queuing or logging of requests. It also allows for the support of undoable operations.YesYesYes
Fluent interface Design an API to be method chained so that it reads like a DSL. Each method call returns a context through which the next logical method call(s) are made available.YesYesYes
Interpreter Given a language, define a representation for its grammar along with an interpreter that uses the representation to interpret sentences in the language.YesYesYes
Iterator Provide a way to access the elements of an aggregate object sequentially without exposing its underlying representation.YesYesYes
Mediator Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by keeping objects from referring to each other explicitly, and it allows their interaction to vary independently.YesYesYes
Memento Without violating encapsulation, capture and externalize an object's internal state allowing the object to be restored to this state later.YesYesYes
Null object Avoid null references by providing a default object.YesYesYes
Observer or Publish/subscribe Define a one-to-many dependency between objects where a state change in one object results in all its dependents being notified and updated automatically.YesYesYes
Servant Define common functionality for a group of classes. The servant pattern is also frequently called helper class or utility class implementation for a given set of classes. The helper classes generally have no objects hence they have all static methods that act upon different kinds of class objects.YesYesYes
Specification Recombinable business logic in a Boolean fashion.YesYesYes
State Allow an object to alter its behavior when its internal state changes. The object will appear to change its class.YesYesYes
Strategy Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm vary independently from clients that use it.YesYesYes
Template method Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template method lets subclasses redefine certain steps of an algorithm without changing the algorithm's structure.YesYesYes
Visitor Represent an operation to be performed on instances of a set of classes. Visitor lets a new operation be defined without changing the classes of the elements on which it operates.YesYesYes

Concurrency patterns

NameDescriptionIn POSA2 [19] Other
Active Object Decouples method execution from method invocation that reside in their own thread of control. The goal is to introduce concurrency, by using asynchronous method invocation and a scheduler for handling requests.Yes
Balking Only execute an action on an object when the object is in a particular state.No
Binding properties Combining multiple observers to force properties in different objects to be synchronized or coordinated in some way. [20] No
Compute kernel The same calculation many times in parallel, differing by integer parameters used with non-branching pointer math into shared arrays, such as GPU-optimized Matrix multiplication or Convolutional neural network.No
Double-checked locking Reduce the overhead of acquiring a lock by first testing the locking criterion (the 'lock hint') in an unsafe manner; only if that succeeds does the actual locking logic proceed.

Can be unsafe when implemented in some language/hardware combinations. It can therefore sometimes be considered an anti-pattern.

Yes
Event-based asynchronous Addresses problems with the asynchronous pattern that occur in multithreaded programs. [21] No
Guarded suspension Manages operations that require both a lock to be acquired and a precondition to be satisfied before the operation can be executed.No
Join Join-pattern provides a way to write concurrent, parallel and distributed programs by message passing. Compared to the use of threads and locks, this is a high-level programming model.No
Lock One thread puts a "lock" on a resource, preventing other threads from accessing or modifying it. [22] NoPoEAA [14]
Messaging design pattern (MDP) Allows the interchange of information (i.e. messages) between components and applications.No
Monitor object An object whose methods are subject to mutual exclusion, thus preventing multiple objects from erroneously trying to use it at the same time.Yes
Reactor A reactor object provides an asynchronous interface to resources that must be handled synchronously.Yes
Read-write lock Allows concurrent read access to an object, but requires exclusive access for write operations. An underlying semaphore might be used for writing, and a Copy-on-write mechanism may or may not be used.No
Scheduler Explicitly control when threads may execute single-threaded code.No
Service handler patternFor each request, a server spawns a dedicated client handler to handle a request. [23] Also referred to as thread-per-session. [24] No
Thread pool A number of threads are created to perform a number of tasks, which are usually organized in a queue. Typically, there are many more tasks than threads. Can be considered a special case of the object pool pattern.No
Thread-specific storage Static or "global" memory local to a thread.Yes
Safe Concurrency with Exclusive OwnershipAvoiding the need for runtime concurrent mechanisms, because exclusive ownership can be proven. This is a notable capability of the Rust language, but compile-time checking isn't the only means, a programmer will often manually design such patterns into code - omitting the use of locking mechanism because the programmer assesses that a given variable is never going to be concurrently accessed.No
CPU atomic operationx86 and other CPU architectures support a range of atomic instructions that guarantee memory safety for modifying and accessing primitive values (integers). For example, two threads may both increment a counter safely. These capabilities can also be used to implement the mechanisms for other concurrency patterns as above. The C# language uses the Interlocked class for these capabilities.No

Documentation

The documentation for a design pattern describes the context in which the pattern is used, the forces within the context that the pattern seeks to resolve, and the suggested solution. [25] There is no single, standard format for documenting design patterns. Rather, a variety of different formats have been used by different pattern authors. However, according to Martin Fowler, certain pattern forms have become more well-known than others, and consequently become common starting points for new pattern-writing efforts. [26] One example of a commonly used documentation format is the one used by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides in their book Design Patterns . It contains the following sections:

Criticism

Some suggest that design patterns may be a sign that features are missing in a given programming language (Java or C++ for instance). Peter Norvig demonstrates that 16 out of the 23 patterns in the Design Patterns book (which is primarily focused on C++) are simplified or eliminated (via direct language support) in Lisp or Dylan. [27] Related observations were made by Hannemann and Kiczales who implemented several of the 23 design patterns using an aspect-oriented programming language (AspectJ) and showed that code-level dependencies were removed from the implementations of 17 of the 23 design patterns and that aspect-oriented programming could simplify the implementations of design patterns. [28] See also Paul Graham's essay "Revenge of the Nerds". [29]

Inappropriate use of patterns may unnecessarily increase complexity. [30]

By definition, a pattern must be programmed anew into each application that uses it. Since some authors see this as a step backward from software reuse as provided by components, researchers have worked to turn patterns into components. Meyer and Arnout were able to provide full or partial componentization of two-thirds of the patterns they attempted. [31]

In order to achieve flexibility, design patterns may introduce additional levels of indirection, which may complicate the resulting design and decrease runtime performance.

See also

Related Research Articles

A design pattern is the re-usable form of a solution to a design problem. The idea was introduced by the architect Christopher Alexander and has been adapted for various other disciplines, particularly software engineering.

<span class="mw-page-title-main">Kent Beck</span> American software engineer

Kent Beck is an American software engineer and the creator of extreme programming, a software development methodology that eschews rigid formal specification for a collaborative and iterative design process. Beck was one of the 17 original signatories of the Agile Manifesto, the founding document for agile software development. Extreme and Agile methods are closely associated with Test-Driven Development (TDD), of which Beck is perhaps the leading proponent.

<span class="mw-page-title-main">Martin Fowler (software engineer)</span> American software developer, author and public speaker

Martin Fowler is a British software developer, author and international public speaker on software development, specialising in object-oriented analysis and design, UML, patterns, and agile software development methodologies, including extreme programming.

<i>Design Patterns</i> 1994 software engineering book

Design Patterns: Elements of Reusable Object-Oriented Software (1994) is a software engineering book describing software design patterns. The book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, with a foreword by Grady Booch. The book is divided into two parts, with the first two chapters exploring the capabilities and pitfalls of object-oriented programming, and the remaining chapters describing 23 classic software design patterns. The book includes examples in C++ and Smalltalk.

In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.

The state pattern is a behavioral software design pattern that allows an object to alter its behavior when its internal state changes. This pattern is close to the concept of finite-state machines. The state pattern can be interpreted as a strategy pattern, which is able to switch a strategy through invocations of methods defined in the pattern's interface.

James O. Coplien, also known as Cope, is a writer, lecturer, and researcher in the field of computer science. He held the 2003–4 Vloeberghs Leerstoel at Vrije Universiteit Brussel and has been a visiting professor at University of Manchester.

In computer programming, a software framework is an abstraction in which software, providing generic functionality, can be selectively changed by additional user-written code, thus providing application-specific software. It provides a standard way to build and deploy applications and is a universal, reusable software environment that provides particular functionality as part of a larger software platform to facilitate the development of software applications, products and solutions.

Object-oriented analysis and design (OOAD) is a technical approach for analyzing and designing an application, system, or business by applying object-oriented programming, as well as using visual modeling throughout the software development process to guide stakeholder communication and product quality.

William F. "Bill" Opdyke is an American computer scientist and enterprise architect at JPMorgan Chase, known for his early work on code refactoring.

In software engineering, the active record pattern is an architectural pattern. It is found in software that stores in-memory object data in relational databases. It was named by Martin Fowler in his 2003 book Patterns of Enterprise Application Architecture. The interface of an object conforming to this pattern would include functions such as Insert, Update, and Delete, plus properties that correspond more or less directly to the columns in the underlying database table.

An architectural pattern is a general, reusable resolution to a commonly occurring problem in software architecture within a given context. The architectural patterns address various issues in software engineering, such as computer hardware performance limitations, high availability and minimization of a business risk. Some architectural patterns have been implemented within software frameworks.

Software analysis patterns or analysis patterns in software engineering are conceptual models, which capture an abstraction of a situation that can often be encountered in modelling. An analysis pattern can be represented as "a group of related, generic objects (meta-classes) with stereotypical attributes, behaviors, and expected interactions defined in a domain-neutral manner."

Single table inheritance is a way to emulate object-oriented inheritance in a relational database. When mapping from a database table to an object in an object-oriented language, a field in the database identifies what class in the hierarchy the object belongs to. All fields of all the classes are stored in the same table, hence the name "Single Table Inheritance". In Ruby on Rails the field in the table called 'type' identifies the name of the class. In Hibernate (Java) and Entity Framework this pattern is called Table-Per-Class-Hierarchy and Table-Per-Hierarchy (TPH) respectively., and the column containing the class name is called the Discriminator column.

<span class="mw-page-title-main">Object-oriented programming</span> Programming paradigm based on the concept of objects

Object-oriented programming (OOP) is a programming paradigm based on the concept of objects, which can contain data and code: data in the form of fields, and code in the form of procedures. In OOP, computer programs are designed by making them out of objects that interact with one another.

Douglas C. Schmidt is a computer scientist and author in the fields of object-oriented programming, distributed computing and design patterns.

A unit of work is a behavioral pattern in software development. Martin Fowler has defined it as everything one does during a business transaction which can affect the database. When the unit of work is finished, it will provide everything that needs to be done to change the database as a result of the work.

In software engineering, the data mapper pattern is an architectural pattern. It was named by Martin Fowler in his 2003 book Patterns of Enterprise Application Architecture. The interface of an object conforming to this pattern would include functions such as Create, Read, Update, and Delete, that operate on objects that represent domain entity types in a data store.

In computer programming, a design smell is a structure in a design that indicates a violation of fundamental design principles, and which can negatively impact the project's quality. The origin of the term can be traced to the term "code smell" which was featured in the book Refactoring: Improving the Design of Existing Code by Martin Fowler.

The hexagonal architecture, or ports and adapters architecture, is an architectural pattern used in software design. It aims at creating loosely coupled application components that can be easily connected to their software environment by means of ports and adapters. This makes components exchangeable at any level and facilitates test automation.

References

  1. Smith, Reid (October 1987). Panel on design methodology. OOPSLA '87 Addendum to the Proceedings. doi:10.1145/62138.62151. Ward cautioned against requiring too much programming at, what he termed, 'the high level of wizards.' He pointed out that a written 'pattern language' can significantly improve the selection and application of abstractions. He proposed a 'radical shift in the burden of design and implementation' basing the new methodology on an adaptation of Christopher Alexander's work in pattern languages and that programming-oriented pattern languages developed at Tektronix has significantly aided their software development efforts.
  2. Beck, Kent; Cunningham, Ward (September 1987). Using Pattern Languages for Object-Oriented Program. OOPSLA '87 workshop on Specification and Design for Object-Oriented Programming. Retrieved 2006-05-26.
  3. Baroni, Aline Lúcia; Guéhéneuc, Yann-Gaël; Albin-Amiot, Hervé (June 2003). Design Patterns Formalization (Report). EMN Technical Report. Nantes: École Nationale Supérieure des Techniques Industrielles et des Mines de Nantes. CiteSeerX   10.1.1.62.6466 . S2CID   624834 via ResearchGate.
  4. Bishop, Judith. "C# 3.0 Design Patterns: Use the Power of C# 3.0 to Solve Real-World Problems". C# Books from O'Reilly Media. Retrieved 2012-05-15. If you want to speed up the development of your .NET applications, you're ready for C# design patterns -- elegant, accepted and proven ways to tackle common programming problems.
  5. Tiako, Pierre F. (31 March 2009). "Formal Modeling and Specification of Design Patterns Using RTPA". In Tiako, Pierre F (ed.). Software Applications: Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools, and Applications. p. 636. doi:10.4018/978-1-60566-060-8. ISBN   9781605660615.
  6. Laakso, Sari A. (2003-09-16). "Collection of User Interface Design Patterns". University of Helsinki, Dept. of Computer Science. Retrieved 2008-01-31.
  7. Heer, J.; Agrawala, M. (2006). "Software Design Patterns for Information Visualization". IEEE Transactions on Visualization and Computer Graphics. 12 (5): 853–60. CiteSeerX   10.1.1.121.4534 . doi:10.1109/TVCG.2006.178. PMID   17080809. S2CID   11634997.
  8. Dougherty, Chad; Sayre, Kirk; Seacord, Robert C.; Svoboda, David; Togashi, Kazuya (2009). Secure Design Patterns (PDF). Software Engineering Institute.
  9. Garfinkel, Simson L. (2005). Design Principles and Patterns for Computer Systems That Are Simultaneously Secure and Usable (Ph.D. thesis).
  10. "Yahoo! Design Pattern Library". Archived from the original on 2008-02-29. Retrieved 2008-01-31.
  11. "How to design your Business Model as a Lean Startup?". 2010-01-06. Retrieved 2010-01-06.
  12. Pattern Languages of Programming, Conference proceedings (annual, 1994—)
  13. 1 2 3 McConnell, Steve (June 2004). "Design in Construction". Code Complete (2nd ed.). Microsoft Press. p.  104. ISBN   978-0-7356-1967-8. Table 5.1 Popular Design Patterns
  14. 1 2 Fowler, Martin (2002). Patterns of Enterprise Application Architecture. Addison-Wesley. ISBN   978-0-321-12742-6.
  15. Alur, Deepak; Crupi, John; Malks, Dan (2003). Core J2EE Patterns: Best Practices and Design Strategies. Prentice Hall. p. 166. ISBN   978-0-13-142246-9.
  16. Fowler, Martin (2002). Patterns of Enterprise Application Architecture. Addison-Wesley. p. 344. ISBN   978-0-321-12742-6.
  17. Bloch, Joshua (2008). "Item 37: Use marker interfaces to define types". Effective Java (Second ed.). Addison-Wesley. p.  179. ISBN   978-0-321-35668-0.
  18. "Twin – A Design Pattern for Modeling Multiple Inheritance" (PDF).
  19. Schmidt, Douglas C.; Stal, Michael; Rohnert, Hans; Buschmann, Frank (2000). Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects. John Wiley & Sons. ISBN   978-0-471-60695-6.
  20. Binding Properties
  21. Nagel, Christian; Evjen, Bill; Glynn, Jay; Watson, Karli; Skinner, Morgan (2008). "Event-based Asynchronous Pattern". Professional C# 2008. Wiley. pp. 570–571. ISBN   978-0-470-19137-8.
  22. Lock Pattern
  23. Francalanza, Adrian; Tabone, Gerard (October 2023). "ElixirST: A session-based type system for Elixir modules". Journal of Logical and Algebraic Methods in Programming. 135. doi:10.1016/j.jlamp.2023.100891. S2CID   251442539.
  24. Schmidt, Douglas C.; Vinoski, Steve (July–August 1996). "Object Interconnections: Comparing Alternative Programming Techniques for Multi-threaded CORBA Servers (Column 7)" (PDF). SIGS C++ Report. S2CID   2654843.
  25. Gabriel, Dick. "A Pattern Definition". Archived from the original on 2007-02-09. Retrieved 2007-03-06.
  26. Fowler, Martin (2006-08-01). "Writing Software Patterns" . Retrieved 2007-03-06.
  27. Norvig, Peter (1998). Design Patterns in Dynamic Languages.
  28. Hannemann, Jan; Kiczales, Gregor (2002). "Design pattern implementation in Java and AspectJ". Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications - OOPSLA '02. OOPSLA '02. p. 161. doi:10.1145/582419.582436. ISBN   1581134711.
  29. Graham, Paul (2002). "Revenge of the Nerds" . Retrieved 2012-08-11.
  30. McConnell, Steve (2004). Code Complete: A Practical Handbook of Software Construction, 2nd Edition . Pearson Education. p.  105. ISBN   9780735619678.
  31. Meyer, Bertrand; Arnout, Karine (July 2006). "Componentization: The Visitor Example" (PDF). IEEE Computer . 39 (7): 23–30. CiteSeerX   10.1.1.62.6082 . doi:10.1109/MC.2006.227. S2CID   15328522.

Further reading