Solar physics

Last updated

Solar physics is the branch of astrophysics that specializes in the study of the Sun. It intersects with many disciplines of pure physics and astrophysics.

Contents

Because the Sun is uniquely situated for close-range observing (other stars cannot be resolved with anything like the spatial or temporal resolution that the Sun can), there is a split between the related discipline of observational astrophysics (of distant stars) and observational solar physics.

The study of solar physics is also important as it provides a "physical laboratory" for the study of plasma physics. [1]

History

Ancient times

Babylonians were keeping a record of solar eclipses, with the oldest record originating from the ancient city of Ugarit, in modern-day Syria. This record dates to about 1300 BC. [2] Ancient Chinese astronomers were also observing solar phenomena (such as solar eclipses and visible sunspots) with the purpose of keeping track of calendars, which were based on lunar and solar cycles. Unfortunately, records kept before 720 BC are very vague and offer no useful information. However, after 720 BC, 37 solar eclipses were noted over the course of 240 years. [3]

Medieval times

Astronomical knowledge flourished in the Islamic world during medieval times. Many observatories were built in cities from Damascus to Baghdad, where detailed astronomical observations were taken. Particularly, a few solar parameters were measured and detailed observations of the Sun were taken. Solar observations were taken with the purpose of navigation, but mostly for timekeeping. Islam requires its followers to pray five times a day, at specific position of the Sun in the sky. As such, accurate observations of the Sun and its trajectory on the sky were needed. In the late 10th century, Iranian astronomer Abu-Mahmud Khojandi built a massive observatory near Tehran. There, he took accurate measurements of a series of meridian transits of the Sun, which he later used to calculate the obliquity of the ecliptic. [4] Following the fall of the Western Roman Empire, Western Europe was cut from all sources of ancient scientific knowledge, especially those written in Greek. This, plus de-urbanisation and diseases such as the Black Death led to a decline in scientific knowledge in Medieval Europe, especially in the early Middle Ages. During this period, observations of the Sun were taken either in relation to the zodiac, or to assist in building places of worship such as churches and cathedrals. [5]

Renaissance period

In astronomy, the renaissance period started with the work of Nicolaus Copernicus. He proposed that planets revolve around the Sun and not around the Earth, as it was believed at the time. This model is known as the heliocentric model. [6] His work was later expanded by Johannes Kepler and Galileo Galilei. Particularly, Galilei used his new telescope to look at the Sun. In 1610, he discovered sunspots on its surface. In the autumn of 1611, Johannes Fabricius wrote the first book on sunspots, De Maculis in Sole Observatis ("On the spots observed in the Sun"). [7]

Modern times

Modern day solar physics is focused towards understanding the many phenomena observed with the help of modern telescopes and satellites. Of particular interest are the structure of the solar photosphere, the coronal heat problem and sunspots.[ citation needed ]

Research

The Solar Physics Division of the American Astronomical Society boasts 555 members (as of May 2007), compared to several thousand in the parent organization. [8]

A major thrust of current (2009) effort in the field of solar physics is integrated understanding of the entire Solar System including the Sun and its effects throughout interplanetary space within the heliosphere and on planets and planetary atmospheres. Studies of phenomena that affect multiple systems in the heliosphere, or that are considered to fit within a heliospheric context, are called heliophysics, a new coinage that entered usage in the early years of the current millennium.

Space based

Helios

Helios-A and Helios-B are a pair of spacecraft launched in December 1974 and January 1976 from Cape Canaveral, as a joint venture between the German Aerospace Center and NASA. Their orbits approach the Sun closer than Mercury. They included instruments to measure the solar wind, magnetic fields, cosmic rays, and interplanetary dust. Helios-A continued to transmit data until 1986. [9] [10]

SOHO

Image of SOHO spacecraft NASA SOHO spacecraft.png
Image of SOHO spacecraft

The Solar and Heliospheric Observatory, SOHO, is a joint project between NASA and ESA that was launched in December 1995. It was launched to probe the interior of the Sun, make observations of the solar wind and phenomena associated with it and investigate the outer layers of the Sun. [11]

HINODE

A publicly funded mission led by the Japanese Aerospace Exploration Agency, the HINODE satellite, launched in 2006, consists of a coordinated set of optical, extreme ultraviolet and X-ray instruments. These investigate the interaction between the solar corona and the Sun's magnetic field. [12] [13]

SDO

The SDO satellite Solar Dynamics Observatory 1.jpg
The SDO satellite

The Solar Dynamics Observatory (SDO) was launched by NASA in February 2010 from Cape Canaveral. The main goals of the mission are understanding how solar activity arises and how it affects life on Earth by determining how the Sun's magnetic field is generated and structured and how the stored magnetic energy is converted and released into space. [14]

PSP

The Parker Solar Probe (PSP) was launched in 2018 with the mission of making detailed observations of the outer solar corona. It has made the closest approaches to the Sun of any artificial object. [15]

Ground based

ATST

The Advanced Technology Solar Telescope (ATST) is a solar telescope facility that is under construction in Maui. Twenty-two institutions are collaborating on the ATST project, with the main funding agency being the National Science Foundation. [16]

SSO

Sunspot Solar Observatory (SSO) operates the Richard B. Dunn Solar Telescope (DST) on behalf of the NSF.

Big Bear

The Big Bear Solar Observatory in California houses several telescopes including the New Solar Telescope(NTS) which is a 1.6 meter, clear-aperture, off-axis Gregorian telescope. The NTS saw first light in December 2008. Until the ATST comes on line, the NTS remains the largest solar telescope in the world. The Big Bear Observatory is one of several facilities operated by the Center for Solar-Terrestrial Research at New Jersey Institute of Technology (NJIT). [17]

Other

EUNIS

The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) is a two channel imaging spectrograph that first flew in 2006. It observes the solar corona with high spectral resolution. So far, it has provided information on the nature of coronal bright points, cool transients and coronal loop arcades. Data from it also helped calibrating SOHO and a few other telescopes. [18]

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Stellar corona</span> Outermost layer of a stars atmosphere

A corona is the outermost layer of a star's atmosphere. It consists of plasma.

<span class="mw-page-title-main">Sunspot</span> Temporary phenomena on the Suns photosphere

Sunspots are phenomena on the Sun's photosphere that appear as temporary spots that are darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic flux that inhibit convection. Sunspots appear within active regions, usually in pairs of opposite magnetic polarity. Their number varies according to the approximately 11-year solar cycle.

<span class="mw-page-title-main">Goddard Space Flight Center</span> NASAs first space research laboratory

The Goddard Space Flight Center (GSFC) is a major NASA space research laboratory located approximately 6.5 miles (10.5 km) northeast of Washington, D.C. in Greenbelt, Maryland, United States. Established on May 1, 1959 as NASA's first space flight center, GSFC employs about 10,000 civil servants and contractors. Named for American rocket propulsion pioneer Robert H. Goddard, it is one of ten major NASA field centers. GSFC is partially within the former Goddard census-designated place; it has a Greenbelt mailing address.

<span class="mw-page-title-main">Solar and Heliospheric Observatory</span> European space observatory

The Solar and Heliospheric Observatory (SOHO) is a European Space Agency (ESA) spacecraft built by a European industrial consortium led by Matra Marconi Space that was launched on a Lockheed Martin Atlas IIAS launch vehicle on 2 December 1995, to study the Sun. It has also discovered over 5,000 comets. It began normal operations in May 1996. It is a joint project between the European Space Agency (ESA) and NASA. SOHO was part of the International Solar Terrestrial Physics Program (ISTP). Originally planned as a two-year mission, SOHO continues to operate after over 25 years in space; the mission has been extended until the end of 2025, subject to review and confirmation by ESA's Science Programme Committee.

The National Solar Observatory (NSO) is a United States federally funded research and development center to advance the knowledge of the physics of the Sun. NSO studies the Sun both as an astronomical object and as the dominant external influence on Earth. NSO is headquartered in Boulder and operates facilities at a number of locations - at the 4-meter Daniel K. Inouye Solar Telescope in the Haleakala Observatory on the island of Maui, at Sacramento Peak near Sunspot in New Mexico, and six sites around the world for the Global Oscillations Network Group one of which is shared with the Synoptic Optical Long-term Investigations of the Sun.

<span class="mw-page-title-main">TRACE</span> NASA satellite of the Explorer program

Transition Region and Coronal Explorer was a NASA heliophysics and solar observatory designed to investigate the connections between fine-scale magnetic fields and the associated plasma structures on the Sun by providing high resolution images and observation of the solar photosphere, the transition region, and the solar corona. A main focus of the TRACE instrument is the fine structure of coronal loops low in the solar atmosphere. TRACE is the third spacecraft in the Small Explorer program, launched on 2 April 1998, and obtained its last science image on 21 June 2010, at 23:56 UTC.

<span class="mw-page-title-main">Harvard–Smithsonian Center for Astrophysics</span> Astronomical observatory in Massachusetts, US

The Center for Astrophysics | Harvard & Smithsonian (CfA), previously known as the Harvard–Smithsonian Center for Astrophysics, is an astrophysics research institute jointly operated by the Harvard College Observatory and Smithsonian Astrophysical Observatory. Founded in 1973 and headquartered in Cambridge, Massachusetts, United States, the CfA leads a broad program of research in astronomy, astrophysics, Earth and space sciences, as well as science education. The CfA either leads or participates in the development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum, including the forthcoming Giant Magellan Telescope (GMT) and the Chandra X-ray Observatory, one of NASA's Great Observatories.

The Lockheed Martin Solar and Astrophysics Laboratory (LMSAL) is part of the Lockheed Martin Advanced Technology Center (ATC) that is known primarily for its scientific work in the field of solar physics, astronomy and space weather. The LMSAL team is part of Lockheed Martin Space Systems and has close affiliations with NASA and the solar physics group at Stanford University.

<span class="mw-page-title-main">STEREO</span> Solar observation mission (2006–present)

STEREO is a solar observation mission. Two nearly identical spacecraft were launched in 2006 into orbits around the Sun that cause them to respectively pull farther ahead of and fall gradually behind the Earth. This enabled stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.

<span class="mw-page-title-main">Solar Dynamics Observatory</span> NASA mission, launched in 2010 to SE-L1

The Solar Dynamics Observatory (SDO) is a NASA mission which has been observing the Sun since 2010. Launched on 11 February 2010, the observatory is part of the Living With a Star (LWS) program.

<span class="mw-page-title-main">Daniel K. Inouye Solar Telescope</span> Scientific facility at Haleakala Observatory in Hawaii, US

The Daniel K. Inouye Solar Telescope (DKIST) is a scientific facility for studies of the Sun at Haleakala Observatory on the Hawaiian island of Maui. Known as the Advanced Technology Solar Telescope (ATST) until 2013, it was named after Daniel K. Inouye, a US Senator for Hawaii. It is the world's largest solar telescope, with a 4-meter aperture. The DKIST is funded by National Science Foundation and managed by the National Solar Observatory. The total project cost is $344.13 million. It is a collaboration of numerous research institutions. Some test images were released in January 2020. The end of construction and transition into scientific observations was announced in November 2021.

<span class="mw-page-title-main">Coronal loop</span> Arch-like structure in the Suns corona

In solar physics, a coronal loop is a well-defined arch-like structure in the Sun's atmosphere made up of relatively dense plasma confined and isolated from the surrounding medium by magnetic flux tubes. Coronal loops begin and end at two footpoints on the photosphere and project into the transition region and lower corona. They typically form and dissipate over periods of seconds to days and may span anywhere from 1 to 1,000 megametres in length.

<span class="mw-page-title-main">Interface Region Imaging Spectrograph</span> NASA satellite of the Explorer program

Interface Region Imaging Spectrograph (IRIS), also called Explorer 94 and SMEX-12, is a NASA solar observation satellite. The mission was funded through the Small Explorer program to investigate the physical conditions of the solar limb, particularly the interface region made up of the chromosphere and transition region. The spacecraft consists of a satellite bus and spectrometer built by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL), and a telescope provided by the Smithsonian Astrophysical Observatory (SAO). IRIS is operated by LMSAL and NASA's Ames Research Center.

<span class="mw-page-title-main">Heliophysics Science Division</span>

The Heliophysics Science Division of the Goddard Space Flight Center (NASA) conducts research on the Sun, its extended Solar System environment, and interactions of Earth, other planets, small bodies, and interstellar gas with the heliosphere. Division research also encompasses geospace—Earth's uppermost atmosphere, the ionosphere, and the magnetosphere—and the changing environmental conditions throughout the coupled heliosphere.

<span class="mw-page-title-main">Louise Harra</span> British physicist

Louise Harra is a Northern Irish physicist, born in Lurgan, County Armagh, Northern Ireland. She is the Director of the World Radiation Centre of the Physical Meteorological Observatory in Davos (PMOD/WRC) and affiliated professor at the Institute of Particle Physics and Astrophysics of ETH Zurich.

<span class="mw-page-title-main">Barbara J. Thompson</span> American solar physicist

Barbara June Thompson is an American solar physicist. She is a scientist at Goddard Space Flight Center where she researches coronal mass ejections and the dynamics of coronal structures. Thompson was the project scientist for NASA's Solar Dynamics Observatory mission through development and early flight.

<span class="mw-page-title-main">Joan T. Schmelz</span> Professor of physics

Joan T. Schmelz is the Associate Director for Science and Public Outreach at the Stratospheric Observatory for Infrared Astronomy (SOFIA) for the Universities Space Research Association (USRA). Previously, Schmelz was the Deputy Director of Arecibo Observatory and the Director of USRA Operations at Arecibo from 2015 through 2018. Before joining USRA, Schmelz was an NSF Program Director in the Astronomical Sciences Division, where she oversaw the Astronomy & Astrophysics Postdoctoral Fellowship program, and a professor of physics at the University of Memphis from 1996 to 2017. Schmelz's research focus is heliophysics, specifically investigating the coronal heating problem as well as the properties and dynamics of the solar atmosphere. She uses spectroscopic and image data in the X-ray and ultraviolet wavelength ranges obtained from NASA satellites and rockets. She has published over 80 refereed scientific journal articles and authored three books.

<span class="mw-page-title-main">Supra-arcade downflows</span> Sunward-traveling plasma voids observed in the Suns outer atmosphere

Supra-arcade downflows (SADs) are sunward-traveling plasma voids that are sometimes observed in the Sun's outer atmosphere, or corona, during solar flares. In solar physics, arcade refers to a bundle of coronal loops, and the prefix supra indicates that the downflows appear above flare arcades. They were first described in 1999 using the Soft X-ray Telescope (SXT) on board the Yohkoh satellite. SADs are byproducts of the magnetic reconnection process that drives solar flares, but their precise cause remains unknown.

<span class="mw-page-title-main">Institute of Theoretical Astrophysics</span> Department of the University of Oslo

The Institute of Theoretical Astrophysics is a research and teaching institute dedicated to astronomy, astrophysics and solar physics located at Blindern in Oslo, Norway. It is a department of The Faculty of Mathematics and Natural Sciences at the University of Oslo. It was founded in its current form by Svein Rosseland with funding from the Rockefeller Foundation in 1934, and was the first of its kind in the world when it opened. Prior to that, it existed as the University Observatory which was created in 1833. It thus is one of the university's oldest institutions. As of 2019, it houses research groups in cosmology, extragalactic astronomy, and The Rosseland Centre for Solar Physics, a Norwegian Centre of Excellence.

<span class="mw-page-title-main">Natchimuthuk Gopalswamy</span> Indian American Solar Physicist

Dr Natchimuthuk "Nat" Gopalswamy is an Indian American Solar physicist. He is currently a staff scientist at the Heliophysics Division of NASA’s Goddard Space Flight Center.

References

  1. Solar Physics, Marshall Space Flight Center. "Why we study the Sun". NASA. Retrieved 28 January 2014.
  2. Littman, M.; Willcox, F; Espenak, F. (2000). Totality: Eclipses of the Sun (2nd ed.). Oxford University Press.
  3. Sten, Odenwald. "Ancient eclipses in China". NASA Goddard Space Flight Center. Retrieved 17 January 2014.
  4. "Arab and Islamic astronomy". StarTeach Astronomy Education. Retrieved 18 January 2014.
  5. Portal to the heritage of astronomy. "Theme: medieval astronomy in Europe". UNESCO. Retrieved 18 January 2014.
  6. Taylor Redd, Nola. "Nicolaus Copernicus biography: facts & discoveries". Space.com. Retrieved 18 January 2014.
  7. "Sunspots". The Galileo Project. Retrieved 18 January 2014.
  8. Solar Physics Division. "Membership". American Astronomical Society. Archived from the original on 22 March 2014. Retrieved 28 January 2014.
  9. "Helios-A – Trajectory Details". National Space Science Data Center . NASA. Retrieved May 26, 2021.
  10. "Helios-B – Trajectory Details". National Space Science Data Center. NASA. Retrieved May 26, 2021.
  11. SOHO, Solar and Heliospheric Observatory. "About the SOHO mission". ESA; NASA. Retrieved 17 January 2014.
  12. Solar Physics Laboratory, Code 671. "HINODE". NASA Goddard Space Flight Centre. Retrieved 17 January 2014.{{cite web}}: CS1 maint: numeric names: authors list (link)
  13. "Hinode". NASA Marshall Space Flight Centre. Retrieved 17 January 2014.
  14. SDO, Solar Dynamics Observatory. "About the SDO mission". NASA Goddard Space Flight Centre. Archived from the original on 30 June 2007. Retrieved 17 January 2014.
  15. "NASA Press Kit: Parker Solar Probe" (PDF). nasa.gov. NASA. August 2018.
  16. "Welcome to the ATST". NSO. Retrieved 17 January 2014.
  17. "Center for Solar-Terrestrial Research Welcome!". NJIT . Retrieved 29 May 2016.
  18. Sciences and Exploration Directorate, Code 600. "Extreme Ultraviolet Normal Incidence Spectrograph". NASA Goddard Space Flight Centre. Retrieved 17 January 2014.{{cite web}}: CS1 maint: numeric names: authors list (link)