Supra-arcade downflows

Last updated
Solar flare observed by TRACE 195 A on 2002 April 21. SADs can be seen at center frame-note the dark "tadpoles" descending toward the bright coronal loop arcade. Supra-Arcade Downflows from TRACE on 2002 April 21.gif
Solar flare observed by TRACE 195 Å on 2002 April 21. SADs can be seen at center frame–note the dark "tadpoles" descending toward the bright coronal loop arcade.

Supra-arcade downflows (SADs) are sunward-traveling plasma voids that are sometimes observed in the Sun's outer atmosphere, or corona, during solar flares. In solar physics, arcade refers to a bundle of coronal loops, and the prefix supra indicates that the downflows appear above flare arcades. They were first described in 1999 using the Soft X-ray Telescope (SXT) on board the Yohkoh satellite. [1] SADs are byproducts of the magnetic reconnection process that drives solar flares, but their precise cause remains unknown.

Contents

Observations

Description

SADs are dark, finger-like plasma voids that are sometimes observed descending through the hot, dense plasma above bright coronal loop arcades during solar flares. They were first reported for a flare and associated coronal mass ejection that occurred on January 20, 1999 and was observed by the SXT onboard Yohkoh. [1] SADs are sometimes referred to as “tadpoles” for their shape and have since been identified in many other events (e.g. [2] [3] [4] [5] ). They tend to be most easily observed in the decay phases of long-duration flares, [2] when sufficient plasma has accumulated above the flare arcade to make SADs visible, but they do begin earlier during the rise phase. [6] In addition to the SAD voids, there are related structures known as supra-arcade downflowing loops (SADLs). SADLs are retracting (shrinking) coronal loops that form as the overlying magnetic field is reconfigured during the flare. SADs and SADLs are thought to be manifestations of the same process viewed from different angles, such that SADLs are observed if the viewer's perspective is along the axis of the arcade (i.e. through the arch), while SADs are observed if the perspective is perpendicular to the arcade axis. [7] [8]

SADs observed by SDO AIA 131 A on 2011 Oct 2. Supra-Arcade Downflows from SDO AIA on 2011 Oct 02.gif
SADs observed by SDO AIA 131 Å on 2011 Oct 2.

Basic properties

SADs typically begin 100–200 Mm above the photosphere and descend 20–50 Mm before dissipating near the top of the flare arcade after a few minutes. [7] [9] Sunward speeds generally fall between 50 and 500 km s−1 [2] [7] but may occasionally approach 1000 km s−1. [7] [10] As they fall, the downflows decelerate at rates of 0.1 to 2 km s−2. [7] SADs appear dark because they are considerably less dense than the surrounding plasma, [3] while their temperatures (100,000 to 10,000,000 K) do not differ significantly from their surroundings. [11] Their cross-sectional areas range from a few million to 70 million km2 [7] (for comparison, the cross-sectional area of the Moon is 9.5 million km2).

Instrumentation

SADs are typically observed using soft X-ray and Extreme Ultraviolet (EUV) telescopes that cover a wavelength range of roughly 10 to 1500 Angstroms (Å) and are sensitive to the high-temperature (100,000 to 10,000,000 K) coronal plasma through which the downflows move. These emissions are blocked by Earth's atmosphere, so observations are made using space observatories. The first detection was made by the Soft X-ray Telescope (SXT) onboard Yohkoh (1991–2001). [1] Observations soon followed from the Transition Region and Coronal Explorer (TRACE, 1998–2010), an EUV imaging satellite, and the spectroscopic SUMER instrument on board the Solar and Heliospheric Observatory (SOHO, 1995–2016). [3] [4] More recently, studies on SADs have used data from the X-Ray Telescope (XRT) onboard Hinode (2006—present) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO, 2010—present). [11] In addition to EUV and X-ray instruments, SADs may also be seen by white light coronagraphs such as the Large Angle and Spectrometric Coronagraph (LASCO) onboard SOHO, [12] though these observations are less common.

Causes

SADs are widely accepted to be byproducts of magnetic reconnection, the physical process that drives solar flares by releasing energy stored in the Sun's magnetic field. Reconnection reconfigures the local magnetic field surrounding the flare site from a higher-energy (non-potential, stressed) state to a lower-energy (potential) state. This process is facilitated by the development of a current sheet, often preceded by or in tandem with a coronal mass ejection. As the field is being reconfigured, newly formed magnetic field lines are swept away from the reconnection site, producing outflows both toward and away from the solar surface, respectively referred to as downflows and upflows. SADs are believed to be related to reconnection downflows that perturb the hot, dense plasma that collects above flare arcades, [4] but precisely how SADs form is uncertain and is an area of active research.

SADs were first interpreted as cross sections of magnetic flux tubes, which comprise coronal loops, that retract down due to magnetic tension after being formed at the reconnection site. [1] [7] This interpretation was later revised to suggest that SADs are instead wakes behind much smaller retracting loops (SADLs), [8] rather than cross sections of the flux tubes themselves. Another possibility, also related to reconnection outflows, is that SADs arise from an instability, such as the Rayleigh-Taylor instability [13] or a combination of the tearing mode and Kelvin-Helmholtz instabilities. [14]

Related Research Articles

<span class="mw-page-title-main">Stellar corona</span> Outermost layer of a stars atmosphere

A corona is the outermost layer of a star's atmosphere. It consists of plasma.

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Solar flare</span> Eruption of electromagnetic radiation

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

<span class="mw-page-title-main">Coronal mass ejection</span> Ejecta from the Suns corona

A coronal mass ejection (CME) is a significant ejection of magnetic field and accompanying plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

<span class="mw-page-title-main">Magnetic reconnection</span> Process in plasma physics

Magnetic reconnection is a physical process occurring in electrically conducting plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection involves plasma flows at a substantial fraction of the Alfvén wave speed, which is the fundamental speed for mechanical information flow in a magnetized plasma.

<span class="mw-page-title-main">Coronal loop</span> Arch-like structure in the Suns corona

In solar physics, a coronal loop is a well-defined arch-like structure in the Sun's atmosphere made up of relatively dense plasma confined and isolated from the surrounding medium by magnetic flux tubes. Coronal loops begin and end at two footpoints on the photosphere and project into the transition region and lower corona. They typically form and dissipate over periods of seconds to days and may span anywhere from 1 to 1,000 megametres in length.

<span class="mw-page-title-main">Stellar magnetic field</span> Magnetic field generated by the convective motion of conductive plasma inside a star

A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops.

<span class="mw-page-title-main">EV Lacertae</span> Star in the constellation Lacerta

EV Lacertae is a faint red dwarf star 16.5 light years away in the constellation Lacerta. It is the nearest star to the Sun in that region of the sky, although with an apparent magnitude of 10, it is only barely visible with binoculars. EV Lacertae is spectral type M3.5 flare star that emits X-rays.

Coronal seismology is a technique of studying the plasma of the Sun's corona with the use of magnetohydrodynamic (MHD) waves and oscillations. Magnetohydrodynamics studies the dynamics of electrically conducting fluids - in this case the fluid is the coronal plasma. Observed properties of the waves (e.g. period, wavelength, amplitude, temporal and spatial signatures, characteristic scenarios of the wave evolution, combined with a theoretical modelling of the wave phenomena, may reflect physical parameters of the corona which are not accessible in situ, such as the coronal magnetic field strength and Alfvén velocity and coronal dissipative coefficients. Originally, the method of MHD coronal seismology was suggested by Y. Uchida in 1970 for propagating waves, and B. Roberts et al. in 1984 for standing waves, but was not practically applied until the late 90s due to a lack of necessary observational resolution. Philosophically, coronal seismology is similar to the Earth's seismology, helioseismology, and MHD spectroscopy of laboratory plasma devices. In all these approaches, waves of various kind are used to probe a medium.

<span class="mw-page-title-main">Helmet streamer</span> Structure in the Suns corona

Helmet streamers, also known as coronal streamers, are elongated cusp-like structures in the Sun's corona which are often visible in white-light coronagraphs and during solar eclipses. They are closed magnetic loops which lie above divisions between regions of opposite magnetic polarity on the Sun's surface. The solar wind elongates these loops to pointed tips which can extend a solar radius or more into the corona.

In solar physics and observation, an active region is a temporary feature in the Sun's atmosphere characterized by a strong and complex magnetic field. They are often associated with sunspots and are commonly the source of violent eruptions such as coronal mass ejections and solar flares. The number and location of active regions on the solar disk at any given time is dependent on the solar cycle.

<span class="mw-page-title-main">Nanoflare</span> Type of episodic heating event

A nanoflare is a very small episodic heating event which happens in the corona, the external atmosphere of the Sun.

Jiong Qiu (邱炯) is a Chinese-born American astrophysicist who won the Karen Harvey Prize for her work in solar flares.

Katharine Reeves is an astronomer and solar physicist who works at the Center for Astrophysics | Harvard & Smithsonian (CfA). She is known for her work on high temperature plasmas in the solar corona, and measurement/analysis techniques to probe the physics of magnetic reconnection and thermal energy transport during solar flares; these are aspects of the coronal heating problem that organizes a large part of the field. She has a strong scientific role in multiple NASA and international space missions to observe the Sun: Hinode ; IRIS ; SDO; Parker Solar Probe; and suborbital sounding rockets including the MaGIXS and Hi-C FLARE high-resolution spectral imaging packages.

James F. Drake is an American theoretical physicist who specializes in plasma physics. He is known for his studies on plasma instabilities and magnetic reconnection for which he was awarded the 2010 James Clerk Maxwell Prize for Plasma Physics by the American Physical Society.

Solar radio emission refers to radio waves that are naturally produced by the Sun, primarily from the lower and upper layers of the atmosphere called the chromosphere and corona, respectively. The Sun produces radio emissions through four known mechanisms, each of which operates primarily by converting the energy of moving electrons into electromagnetic radiation. The four emission mechanisms are thermal bremsstrahlung (braking) emission, gyromagnetic emission, plasma emission, and electron-cyclotron maser emission. The first two are incoherent mechanisms, which means that they are the summation of radiation generated independently by many individual particles. These mechanisms are primarily responsible for the persistent "background" emissions that slowly vary as structures in the atmosphere evolve. The latter two processes are coherent mechanisms, which refers to special cases where radiation is efficiently produced at a particular set of frequencies. Coherent mechanisms can produce much larger brightness temperatures (intensities) and are primarily responsible for the intense spikes of radiation called solar radio bursts, which are byproducts of the same processes that lead to other forms of solar activity like solar flares and coronal mass ejections.

<span class="mw-page-title-main">Alfvén surface</span> Boundary between solar corona and wind

The Alfvén surface is the boundary separating a star's corona from the stellar wind defined as where the coronal plasma's Alfvén speed and the large-scale stellar wind speed are equal. It is named after Hannes Alfvén, and is also called Alfvén critical surface, Alfvén point, or Alfvén radius. In 2018, the Parker Solar Probe became the first spacecraft that crossed Alfvén surface of the Sun.

<span class="mw-page-title-main">Magnetic switchback</span>

Magnetic switchbacks are sudden reversals in the magnetic field of the solar wind. They can also be described as traveling disturbances in the solar wind that caused the magnetic field to bend back on itself. They were first observed by the NASA-ESA mission Ulysses, the first spacecraft to fly over the Sun's poles. NASA's Parker Solar Probe and NASA/ESA Solar Orbiter both observed switchbacks.

<span class="mw-page-title-main">Gordon Dean Holman</span> American astrophysicist, NASA scientist

Gordon Dean Holman is an emeritus research astrophysicist at the National Aeronautics and Space Administration's (NASA’s) Goddard Space Flight Center in Greenbelt, Maryland. His research mostly focused on obtaining an understanding of high-energy radiation from astronomical objects. This radiation cannot be observed from Earth's surface, but is observed with instruments on satellites launched to orbits above Earth's atmosphere. It is primarily emitted by high-energy electrons interacting with ions. These electrons also emit radiation at radio frequencies which is observed from Earth's surface. Consequently, these observations from space and radio telescopes provide a view of hot gas and energetic particles in the Universe that could not otherwise be obtained. Holman has specialized in the interpretation of these observed emissions to determine the origin and evolution of this hot gas and energetic particles. He has been described as "not just a theorist, he also looks at the data".

<span class="mw-page-title-main">Solar jet</span> Jet of plasma in the Suns atmosphere

Solar jets are transient, collimated flows of plasma in the Sun's atmosphere. They occur at many different scales, temperatures, and locations, and are driven by the release of magnetic energy via magnetic reconnection. The plasma ejected by a solar jet travels away from the Sun along straight or oblique paths, tracing the local magnetic field.

References

  1. 1 2 3 4 McKenzie, D. E.; Hudson, H. S. (1999-07-01). "X-Ray Observations of Motions and Structure above a Solar Flare Arcade". The Astrophysical Journal. 519 (1): L93–L96. Bibcode:1999ApJ...519L..93M. CiteSeerX   10.1.1.42.5132 . doi:10.1086/312110. S2CID   7360429.
  2. 1 2 3 McKenzie, D. E. (2000-08-01). "Supra-arcade Downflows in Long-Duration Solar Flare Events". Solar Physics. 195 (2): 381–399. Bibcode:2000SoPh..195..381M. doi:10.1023/A:1005220604894. ISSN   0038-0938. S2CID   119006211.
  3. 1 2 3 Innes, D. E.; McKenzie, D. E.; Wang, Tongjiang (2003-11-01). "SUMER spectral observations of post-flare supra-arcade inflows". Solar Physics. 217 (2): 247–265. Bibcode:2003SoPh..217..247I. CiteSeerX   10.1.1.149.5002 . doi:10.1023/B:SOLA.0000006899.12788.22. ISSN   0038-0938. S2CID   16049512.
  4. 1 2 3 Asai, Ayumi; Yokoyama, Takaaki; Shimojo, Masumi; Shibata, Kazunari (2004-04-10). "Downflow Motions Associated with Impulsive Nonthermal Emissions Observed in the 2002 July 23 Solar Flare". The Astrophysical Journal. 605 (1): L77–L80. Bibcode:2004ApJ...605L..77A. doi:10.1086/420768. S2CID   121873264.
  5. Reeves, K. K.; Guild, T. B.; Hughes, W. J.; Korreck, K. E.; Lin, J.; Raymond, J.; Savage, S.; Schwadron, N. A.; Spence, H. E. (2008-09-01). "Posteruptive phenomena in coronal mass ejections and substorms: Indicators of a universal process?". Journal of Geophysical Research: Space Physics. 113 (A9): A00B02. Bibcode:2008JGRA..113.0B02R. doi: 10.1029/2008JA013049 . ISSN   2156-2202.
  6. Khan, J. I.; Bain, H. M.; Fletcher, L. (2007). "The relative timing of supra-arcade downflows in solar flares" (PDF). Astronomy and Astrophysics. 475 (1): 333–340. Bibcode:2007A&A...475..333K. doi: 10.1051/0004-6361:20077894 .
  7. 1 2 3 4 5 6 7 Savage, Sabrina L.; McKenzie, David E. (2011-04-01). "Quantitative Examination of a Large Sample of Supra-Arcade Downflows in Eruptive Solar Flares". The Astrophysical Journal. 730 (2): 98. arXiv: 1101.1540 . Bibcode:2011ApJ...730...98S. doi:10.1088/0004-637x/730/2/98. S2CID   119273860.
  8. 1 2 Savage, Sabrina L.; McKenzie, David E.; Reeves, Katharine K. (2012-03-10). "Re-Interpretation of Supra-Arcade Downflows in Solar Flares". The Astrophysical Journal. 747 (2): L40. arXiv: 1112.3088 . Bibcode:2012ApJ...747L..40S. doi:10.1088/2041-8205/747/2/l40. S2CID   11690638.
  9. McKenzie, D. E.; Savage, Sabrina L. (2009-06-01). "Quantitative Examination of Supra-Arcade Downflows in Eruptive Solar Flares". The Astrophysical Journal. 697 (2): 1569–1577. Bibcode:2009ApJ...697.1569M. doi: 10.1088/0004-637x/697/2/1569 .
  10. Liu, Wei; Chen, Qingrong; Petrosian, Vahé (2013-04-20). "Plasmoid Ejections and Loop Contractions in an Eruptive M7.7 Solar Flare: Evidence of Particle Acceleration and Heating in Magnetic Reconnection Outflows". The Astrophysical Journal. 767 (2): 168. arXiv: 1303.3321 . Bibcode:2013ApJ...767..168L. doi:10.1088/0004-637x/767/2/168. S2CID   119205881.
  11. 1 2 Hanneman, Will J.; Reeves, Katharine K. (2014-05-10). "Thermal Structure of Current Sheets and Supra-Arcade Downflows in the Solar Corona". The Astrophysical Journal. 786 (2): 95. Bibcode:2014ApJ...786...95H. doi: 10.1088/0004-637x/786/2/95 .
  12. Sheeley, N. R. Jr.; Warren, H. P.; Wang, Y.-M. (2004-12-01). "The Origin of Postflare Loops". The Astrophysical Journal. 616 (2): 1224–1231. Bibcode:2004ApJ...616.1224S. doi:10.1086/425126. S2CID   120832655.
  13. Guo, L.-J.; Huang, Y.-M.; Bhattacharjee, A.; Innes, D. E. (2014). "Rayleigh-Taylor Type Instabilities in the Reconnection Exhaust Jet as a Mechanism for Supra-Arcade Downflows in the Sun". The Astrophysical Journal. 796 (2): L29. arXiv: 1406.3305 . Bibcode:2014ApJ...796L..29G. doi:10.1088/2041-8205/796/2/l29. S2CID   117149306.
  14. Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M. (2015). "3D MHD Simulation of Flare Supra-Arcade Downflows in a Turbulent Current Sheet Medium". The Astrophysical Journal. 807 (1): 6. arXiv: 1407.3298 . Bibcode:2015ApJ...807....6C. doi:10.1088/0004-637x/807/1/6. S2CID   118688215.