Spiral plater

Last updated
A photograph of a Petri dish with a spiral pattern dispensed using an integrated spiral plater on a Tecan robot. The media used was a purple color to illustrate the resulting pattern, normally a transparent media would be used. Spiral plater pattern on petri dish.jpg
A photograph of a Petri dish with a spiral pattern dispensed using an integrated spiral plater on a Tecan robot. The media used was a purple color to illustrate the resulting pattern, normally a transparent media would be used.

A spiral plater is an instrument used to dispense a liquid sample onto a Petri dish in a spiral pattern. Commonly used as part of a CFU count procedure for the purpose of determining the number of microbes in the sample. [1] In this setting, after spiral plating, the Petri dish is incubated for several hours after which the number of colony forming microbes (CFU) is determined. Spiral platers are also used for research, clinical diagnostics and as a method for covering a Petri dish with bacteria before placing antibiotic discs for AST.

Contents

Mode of action

The spiral plater rotates the dish while simultaneously dispensing the liquid and either linearly moving the dish or the dispensing tip. This creates the common spiral pattern. If all movements are done in constant speed, the spiral created would have a lower concentration on the outside of the plate than on the inside. More advanced spiral platers provide different options for spiral patterns such as constant concentration (by slowing down the spinning and / or the lateral movements) or exponential concentration (by speeding up the spinning and / or the lateral movements).[ citation needed ]

In food and cosmetic testing

Spiral plating is used extensively for microbiological testing of food, milk and milk products and cosmetics. It is an approved method by the FDA. [2] The advantage of spiral plating is less plates used versus plating manually because different concentrations are present on each plate. [3] [1] This also makes it harder to count the colonies and requires special techniques and equipment. [2]

Stand-alone vs. Add-on

Spiral platers are either available as stand-alone instruments that are fed manually with plates and samples or fed automatically using dedicated stackers. Alternatively spiral platers are available as integrated devices as part of larger automated platforms. In this case a larger workflow is often automated, e.g. plating, incubation and counting.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Bacterial lawn</span>

Bacterial lawn is a term used by microbiologists to describe the appearance of bacterial colonies when all the individual colonies on a Petri dish agar plate merge to form a field or mat of bacteria. Bacterial lawns find use in screens for antibiotic resistance and bacteriophage titering.

<span class="mw-page-title-main">Petri dish</span> Shallow dish used to hold cell cultures

A Petri dish is a shallow transparent lidded dish that biologists use to hold growth medium in which cells can be cultured, originally, cells of bacteria, fungi and small mosses. The container is named after its inventor, German bacteriologist Julius Richard Petri. It is the most common type of culture plate. The Petri dish is one of the most common items in biology laboratories and has entered popular culture. The term is sometimes written in lower case, especially in non-technical literature.

<span class="mw-page-title-main">Replica plating</span>

Replica plating is a microbiological technique in which one or more secondary Petri plates containing different solid (agar-based) selective growth media are inoculated with the same colonies of microorganisms from a primary plate, reproducing the original spatial pattern of colonies. The technique involves pressing a velveteen-covered disk, and then imprinting secondary plates with cells in colonies removed from the original plate by the material. Generally, large numbers of colonies are replica plated due to the difficulty in streaking each out individually onto a separate plate.

<span class="mw-page-title-main">Microbiological culture</span> Method of allowing microorganisms to multiply in a controlled medium

A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as research tools in molecular biology.

<span class="mw-page-title-main">Bacteriological water analysis</span>

Bacteriological water analysis is a method of analysing water to estimate the numbers of bacteria present and, if needed, to find out what sort of bacteria they are. It represents one aspect of water quality. It is a microbiological analytical procedure which uses samples of water and from these samples determines the concentration of bacteria. It is then possible to draw inferences about the suitability of the water for use from these concentrations. This process is used, for example, to routinely confirm that water is safe for human consumption or that bathing and recreational waters are safe to use.

<span class="mw-page-title-main">Laboratory robotics</span> Using robots in biology or chemistry labs

Laboratory robotics is the act of using robots in biology, chemistry or engineering labs. For example, pharmaceutical companies employ robots to move biological or chemical samples around to synthesize novel chemical entities or to test pharmaceutical value of existing chemical matter. Advanced laboratory robotics can be used to completely automate the process of science, as in the Robot Scientist project.

<span class="mw-page-title-main">Blood culture</span> Test to detect bloodstream infections

A blood culture is a medical laboratory test used to detect bacteria or fungi in a person's blood. Under normal conditions, the blood does not contain microorganisms: their presence can indicate a bloodstream infection such as bacteremia or fungemia, which in severe cases may result in sepsis. By culturing the blood, microbes can be identified and tested for resistance to antimicrobial drugs, which allows clinicians to provide an effective treatment.

<span class="mw-page-title-main">Julius Richard Petri</span> German microbiologist (1852–1921)

Julius Richard Petri was a German microbiologist who is generally credited with inventing the device known as the Petri dish, which is named after him, while working as assistant to bacteriologist Robert Koch.

In microbiology, colony-forming unit is a unit which estimates the number of microbial cells in a sample that are viable, able to multiply via binary fission under the controlled conditions. Counting with colony-forming units requires culturing the microbes and counts only viable cells, in contrast with microscopic examination which counts all cells, living or dead. The visual appearance of a colony in a cell culture requires significant growth, and when counting colonies, it is uncertain if the colony arose from one cell or a group of cells. Expressing results as colony-forming units reflects this uncertainty.

<span class="mw-page-title-main">Liquid handling robot</span>

A liquid handling robot is used to automate workflows in life science laboratories. It is a robot that dispenses a selected quantity of reagent, samples or other liquid to a designated container.

A particulate matter sampler is an instrument for measuring the properties of particulates in the ambient air.

<span class="mw-page-title-main">Streaking (microbiology)</span> Method for isolation of bacterial strains

In microbiology, streaking is a technique used to isolate a pure strain from a single species of microorganism, often bacteria. Samples can then be taken from the resulting colonies and a microbiological culture can be grown on a new plate so that the organism can be identified, studied, or tested.

<span class="mw-page-title-main">Petrifilm</span> Plating system developed by 3M

The 3M Petrifilm plate is an all-in-one plating system made by the Food Safety Division of the 3M Company. They are heavily used in many microbiology-related industries and fields to culture various micro-organisms and are meant to be a more efficient method for detection and enumeration compared to conventional plating techniques. A majority of its use is for the testing of foodstuffs.

Total viable count (TVC), gives a quantitative estimate of the concentration of microorganisms such as bacteria, yeast or mould spores in a sample. The count represents the number of colony forming units (cfu) per g of the sample.

Plate count agar (PCA), also called standard methods agar (SMA), is a microbiological growth medium commonly used to assess or to monitor "total" or viable bacterial growth of a sample. PCA is not a selective medium.

<span class="mw-page-title-main">Mycobacteria growth indicator tube</span>

Mycobacteria Growth Indicator Tube (MGIT) is intended for the culture, detection and recovery of mycobacteria. The MGIT Mycobacteria Growth Indicator Tube contains 7 mL of modified Middlebrook 7H9 Broth base. The complete medium, with OADC enrichment and PANTA antibiotic mixture, is one of the most commonly used liquid media for the cultivation of mycobacteria.

Cell counting is any of various methods for the counting or similar quantification of cells in the life sciences, including medical diagnosis and treatment. It is an important subset of cytometry, with applications in research and clinical practice. For example, the complete blood count can help a physician to determine why a patient feels unwell and what to do to help. Cell counts within liquid media are usually expressed as a number of cells per unit of volume, thus expressing a concentration.

Bioburden is normally defined as the number of bacteria living on a surface that has not been sterilized.

Impedance microbiology is a microbiological technique used to measure the microbial number density of a sample by monitoring the electrical parameters of the growth medium. The ability of microbial metabolism to change the electrical conductivity of the growth medium was discovered by Stewart and further studied by other scientists such as Oker-Blom, Parson and Allison in the first half of 20th century. However, it was only in the late 1970s that, thanks to computer-controlled systems used to monitor impedance, the technique showed its full potential, as discussed in the works of Fistenberg-Eden & Eden, Ur & Brown and Cady.

In microbiology, the term isolation refers to the separation of a strain from a natural, mixed population of living microbes, as present in the environment, for example in water or soil, or from living beings with skin flora, oral flora or gut flora, in order to identify the microbe(s) of interest. Historically, the laboratory techniques of isolation first developed in the field of bacteriology and parasitology, before those in virology during the 20th century.

References

  1. 1 2 J. E. Gilchrist, J. E. Campbell, C. B. Donnelly, J. T. Peeler, and J. M. Delaney "Spiral Plate Method for Bacterial Determination", Appl Microbiol. , 1973 February; 25(2): 244–252., PMC   380780
  2. 1 2 "BAM: Aerobic Plate Count". Fda.gov. 2009-01-27. Retrieved 2013-10-01.
  3. "Advances in Spiral Plating Increase Reproducibility and Cost Savings". Food Safety Magazine. 2012-11-08. Retrieved 2013-10-01.