Linear motion

Last updated

Linear motion, also called rectilinear motion, [1] is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position , which varies with (time). An example of linear motion is an athlete running a 100-meter dash along a straight track. [2]

Contents

Linear motion is the most basic of all motion. According to Newton's first law of motion, objects that do not experience any net force will continue to move in a straight line with a constant velocity until they are subjected to a net force. Under everyday circumstances, external forces such as gravity and friction can cause an object to change the direction of its motion, so that its motion cannot be described as linear. [3]

One may compare linear motion to general motion. In general motion, a particle's position and velocity are described by vectors, which have a magnitude and direction. In linear motion, the directions of all the vectors describing the system are equal and constant which means the objects move along the same axis and do not change direction. The analysis of such systems may therefore be simplified by neglecting the direction components of the vectors involved and dealing only with the magnitude. [2]

Background

Displacement

The motion in which all the particles of a body move through the same distance in the same time is called translatory motion. There are two types of translatory motions: rectilinear motion; curvilinear motion. Since linear motion is a motion in a single dimension, the distance traveled by an object in particular direction is the same as displacement. [4] The SI unit of displacement is the metre. [5] [6] If is the initial position of an object and is the final position, then mathematically the displacement is given by:

The equivalent of displacement in rotational motion is the angular displacement measured in radians. The displacement of an object cannot be greater than the distance because it is also a distance but the shortest one. Consider a person travelling to work daily. Overall displacement when he returns home is zero, since the person ends up back where he started, but the distance travelled is clearly not zero.

Velocity

Velocity refers to a displacement in one direction with respect to an interval of time. It is defined as the rate of change of displacement over change in time. [7] Velocity is a vector quantity, representing a direction and a magnitude of movement. The magnitude of a velocity is called speed. The SI unit of speed is that is metre per second. [6]

Average velocity

The average velocity of a moving body is its total displacement divided by the total time needed to travel from the initial point to the final point. It is an estimated velocity for a distance to travel. Mathematically, it is given by: [8] [9]

where:

  • is the time at which the object was at position and
  • is the time at which the object was at position

The magnitude of the average velocity is called an average speed.

Instantaneous velocity

In contrast to an average velocity, referring to the overall motion in a finite time interval, the instantaneous velocity of an object describes the state of motion at a specific point in time. It is defined by letting the length of the time interval tend to zero, that is, the velocity is the time derivative of the displacement as a function of time.

The magnitude of the instantaneous velocity is called the instantaneous speed.The instantaneous velocity equation comes from finding the limit as t approaches 0 of the average velocity. The instantaneous velocity shows the position function with respect to time. From the instantaneous velocity the instantaneous speed can be derived by getting the magnitude of the instantaneous velocity.

Acceleration

Acceleration is defined as the rate of change of velocity with respect to time. Acceleration is the second derivative of displacement i.e. acceleration can be found by differentiating position with respect to time twice or differentiating velocity with respect to time once. [10] The SI unit of acceleration is or metre per second squared. [6]

If is the average acceleration and is the change in velocity over the time interval then mathematically,

The instantaneous acceleration is the limit, as approaches zero, of the ratio and , i.e.,

Jerk

The rate of change of acceleration, the third derivative of displacement is known as jerk. [11] The SI unit of jerk is . In the UK jerk is also referred to as jolt.

Jounce

The rate of change of jerk, the fourth derivative of displacement is known as jounce. [11] The SI unit of jounce is which can be pronounced as metres per quartic second.

Formulation

In case of constant acceleration, the four physical quantities acceleration, velocity, time and displacement can be related by using the equations of motion [12] [13] [14]

Vf=Vi+at

d=Vit+½a

V²f=V²i+2a*d

d=½(Vf+Vi)t

here,

These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.

Comparison to circular motion

The following table refers to rotation of a rigid body about a fixed axis: is arc length, is the distance from the axis to any point, and is the tangential acceleration, which is the component of the acceleration that is parallel to the motion. In contrast, the centripetal acceleration, , is perpendicular to the motion. The component of the force parallel to the motion, or equivalently, perpendicular to the line connecting the point of application to the axis is . The sum is over from to particles and/or points of application.

Analogy between Linear Motion and Rotational motion [15]
Linear motionRotational motionDefining equation
Displacement = Angular displacement =
Velocity = Angular velocity =
Acceleration = Angular acceleration =
Mass = Moment of Inertia =
Force = Torque =
Momentum= Angular momentum=
Kinetic energy = Kinetic energy =

The following table shows the analogy in derived SI units:

See also

Related Research Articles

<span class="mw-page-title-main">Acceleration</span> Rate of change of velocity

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Jerk (physics)</span> Rate of change of acceleration with time


In physics, jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s3 (SI units) or standard gravities per second (g0/s).

<span class="mw-page-title-main">Orbit</span> Curved path of an object around a point

In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

In physics, power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. In older works, power is sometimes called activity. Power is a scalar quantity.

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Angular velocity</span> Pseudovector representing an objects change in orientation with respect to time

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Work (physics)</span> Process of energy transfer to an object via force application through displacement

In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if when applied it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

Verlet integration is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics. The algorithm was first used in 1791 by Jean Baptiste Delambre and has been rediscovered many times since then, most recently by Loup Verlet in the 1960s for use in molecular dynamics. It was also used by P. H. Cowell and A. C. C. Crommelin in 1909 to compute the orbit of Halley's Comet, and by Carl Størmer in 1907 to study the trajectories of electrical particles in a magnetic field . The Verlet integrator provides good numerical stability, as well as other properties that are important in physical systems such as time reversibility and preservation of the symplectic form on phase space, at no significant additional computational cost over the simple Euler method.

<span class="mw-page-title-main">Displacement (geometry)</span> Vector relating the initial and the final positions of a moving point

In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.

<span class="mw-page-title-main">Position (geometry)</span> Vector representing the position of a point with respect to a fixed origin

In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O and its direction represents the angular orientation with respect to given reference axes. Usually denoted x, r, or s, it corresponds to the straight line segment from O to P. In other words, it is the displacement or translation that maps the origin to P:

In a compressible sound transmission medium - mainly air - air particles get an accelerated motion: the particle acceleration or sound acceleration with the symbol a in metre/second2. In acoustics or physics, acceleration is defined as the rate of change of velocity. It is thus a vector quantity with dimension length/time2. In SI units, this is m/s2.

A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the value of the function. The variable denoting time is usually written as .

<span class="mw-page-title-main">Thomas precession</span> Relativistic correction

In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

<span class="mw-page-title-main">Motion graphs and derivatives</span>

In mechanics, the derivative of the position vs. time graph of an object is equal to the velocity of the object. In the International System of Units, the position of the moving object is measured in meters relative to the origin, while the time is measured in seconds. Placing position on the y-axis and time on the x-axis, the slope of the curve is given by:

<span class="mw-page-title-main">Proper velocity</span> Ratio in relativity

In relativity, proper velocityw of an object relative to an observer is the ratio between observer-measured displacement vector and proper time τ elapsed on the clocks of the traveling object:

<span class="mw-page-title-main">Velocity</span> Speed and direction of a motion

Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

References

  1. Resnick, Robert and Halliday, David (1966), Physics, Section 3-4
  2. 1 2 "Basic principles for understanding sport mechanics".
  3. "Motion Control Resource Info Center" . Retrieved 19 January 2011.
  4. "Distance and Displacement".
  5. "SI Units".
  6. 1 2 3 "SI Units".
  7. Elert, Glenn (2021). "Speed & Velocity". The Physics Hypertextbook.
  8. "Average speed and average velocity".
  9. "Average Velocity, Straight Line".
  10. "Acceleration". Archived from the original on 2011-08-08.
  11. 1 2 "What is the term used for the third derivative of position?".
  12. "Equations of motion" (PDF).
  13. "Description of Motion in One Dimension".
  14. "What is derivatives of displacement?".
  15. "Linear Motion vs Rotational motion" (PDF).

Further reading

Commons-logo.svg Media related to Linear movement at Wikimedia Commons