Squeeze mapping

Last updated
r = 3/2 squeeze mapping Squeeze r=1.5.svg
r = 3/2 squeeze mapping

In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is not a rotation or shear mapping.

Contents

For a fixed positive real number a, the mapping

is the squeeze mapping with parameter a. Since

is a hyperbola, if u = ax and v = y/a, then uv = xy and the points of the image of the squeeze mapping are on the same hyperbola as (x,y) is. For this reason it is natural to think of the squeeze mapping as a hyperbolic rotation, as did Émile Borel in 1914, [1] by analogy with circular rotations, which preserve circles.

Logarithm and hyperbolic angle

The squeeze mapping sets the stage for development of the concept of logarithms. The problem of finding the area bounded by a hyperbola (such as xy = 1) is one of quadrature. The solution, found by Grégoire de Saint-Vincent and Alphonse Antonio de Sarasa in 1647, required the natural logarithm function, a new concept. Some insight into logarithms comes through hyperbolic sectors that are permuted by squeeze mappings while preserving their area. The area of a hyperbolic sector is taken as a measure of a hyperbolic angle associated with the sector. The hyperbolic angle concept is quite independent of the ordinary circular angle, but shares a property of invariance with it: whereas circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping. Both circular and hyperbolic angle generate invariant measures but with respect to different transformation groups. The hyperbolic functions, which take hyperbolic angle as argument, perform the role that circular functions play with the circular angle argument. [2]

Group theory

A squeeze mapping moves one purple hyperbolic sector to another with the same area.
It also squeezes blue and green rectangles. Hyperbolic sector squeeze mapping.svg
A squeeze mapping moves one purple hyperbolic sector to another with the same area.
It also squeezes blue and green rectangles.

In 1688, long before abstract group theory, the squeeze mapping was described by Euclid Speidell in the terms of the day: "From a Square and an infinite company of Oblongs on a Superficies, each Equal to that square, how a curve is begotten which shall have the same properties or affections of any Hyperbola inscribed within a Right Angled Cone." [3]

If r and s are positive real numbers, the composition of their squeeze mappings is the squeeze mapping of their product. Therefore, the collection of squeeze mappings forms a one-parameter group isomorphic to the multiplicative group of positive real numbers. An additive view of this group arises from consideration of hyperbolic sectors and their hyperbolic angles.

From the point of view of the classical groups, the group of squeeze mappings is SO+(1,1), the identity component of the indefinite orthogonal group of 2×2 real matrices preserving the quadratic form u2v2. This is equivalent to preserving the form xy via the change of basis

and corresponds geometrically to preserving hyperbolae. The perspective of the group of squeeze mappings as hyperbolic rotation is analogous to interpreting the group SO(2) (the connected component of the definite orthogonal group) preserving quadratic form x2 + y2 as being circular rotations.

Note that the "SO+" notation corresponds to the fact that the reflections

are not allowed, though they preserve the form (in terms of x and y these are xy, yx and x ↦ −x, y ↦ −y); the additional "+" in the hyperbolic case (as compared with the circular case) is necessary to specify the identity component because the group O(1,1) has 4 connected components, while the group O(2) has 2 components: SO(1,1) has 2 components, while SO(2) only has 1. The fact that the squeeze transforms preserve area and orientation corresponds to the inclusion of subgroups SO ⊂ SL in this case SO(1,1)   SL(2) – of the subgroup of hyperbolic rotations in the special linear group of transforms preserving area and orientation (a volume form). In the language of Möbius transformations, the squeeze transformations are the hyperbolic elements in the classification of elements.

A geometric transformation is called conformal when it preserves angles. Hyperbolic angle is defined using area under y = 1/x. Since squeeze mappings preserve areas of transformed regions such as hyperbolic sectors, the angle measure of sectors is preserved. Thus squeeze mappings are conformal in the sense of preserving hyperbolic angle.

Applications

Here some applications are summarized with historic references.

Relativistic spacetime

Euclidean orthogonality is preserved by rotation in the left diagram; hyperbolic orthogonality with respect to hyperbola (B) is preserved by squeeze mapping in the right diagram Orthogonality and rotation.svg
Euclidean orthogonality is preserved by rotation in the left diagram; hyperbolic orthogonality with respect to hyperbola (B) is preserved by squeeze mapping in the right diagram

Spacetime geometry is conventionally developed as follows: Select (0,0) for a "here and now" in a spacetime. Light radiant left and right through this central event tracks two lines in the spacetime, lines that can be used to give coordinates to events away from (0,0). Trajectories of lesser velocity track closer to the original timeline (0,t). Any such velocity can be viewed as a zero velocity under a squeeze mapping called a Lorentz boost. This insight follows from a study of split-complex number multiplications and the diagonal basis which corresponds to the pair of light lines. Formally, a squeeze preserves the hyperbolic metric expressed in the form xy; in a different coordinate system. This application in the theory of relativity was noted in 1912 by Wilson and Lewis, [4] by Werner Greub, [5] and by Louis Kauffman. [6] Furthermore, the squeeze mapping form of Lorentz transformations was used by Gustav Herglotz (1909/10) [7] while discussing Born rigidity, and was popularized by Wolfgang Rindler in his textbook on relativity, who used it in his demonstration of their characteristic property. [8]

The term squeeze transformation was used in this context in an article connecting the Lorentz group with Jones calculus in optics. [9]

Corner flow

In fluid dynamics one of the fundamental motions of an incompressible flow involves bifurcation of a flow running up against an immovable wall. Representing the wall by the axis y = 0 and taking the parameter r = exp(t) where t is time, then the squeeze mapping with parameter r applied to an initial fluid state produces a flow with bifurcation left and right of the axis x = 0. The same model gives fluid convergence when time is run backward. Indeed, the area of any hyperbolic sector is invariant under squeezing.

For another approach to a flow with hyperbolic streamlines, see Potential flow § Power laws with n = 2.

In 1989 Ottino [10] described the "linear isochoric two-dimensional flow" as

where K lies in the interval [1, 1]. The streamlines follow the curves

so negative K corresponds to an ellipse and positive K to a hyperbola, with the rectangular case of the squeeze mapping corresponding to K = 1.

Stocker and Hosoi [11] described their approach to corner flow as follows:

we suggest an alternative formulation to account for the corner-like geometry, based on the use of hyperbolic coordinates, which allows substantial analytical progress towards determination of the flow in a Plateau border and attached liquid threads. We consider a region of flow forming an angle of π/2 and delimited on the left and bottom by symmetry planes.

Stocker and Hosoi then recall Moffatt's [12] consideration of "flow in a corner between rigid boundaries, induced by an arbitrary disturbance at a large distance." According to Stocker and Hosoi,

For a free fluid in a square corner, Moffatt's (antisymmetric) stream function ... [indicates] that hyperbolic coordinates are indeed the natural choice to describe these flows.

Bridge to transcendentals

The area-preserving property of squeeze mapping has an application in setting the foundation of the transcendental functions natural logarithm and its inverse the exponential function:

Definition: Sector(a,b) is the hyperbolic sector obtained with central rays to (a, 1/a) and (b, 1/b).

Lemma: If bc = ad, then there is a squeeze mapping that moves the sector(a,b) to sector(c,d).

Proof: Take parameter r = c/a so that (u,v) = (rx, y/r) takes (a, 1/a) to (c, 1/c) and (b, 1/b) to (d, 1/d).

Theorem (Gregoire de Saint-Vincent 1647) If bc = ad, then the quadrature of the hyperbola xy = 1 against the asymptote has equal areas between a and b compared to between c and d.

Proof: An argument adding and subtracting triangles of area 12, one triangle being {(0,0), (0,1), (1,1)}, shows the hyperbolic sector area is equal to the area along the asymptote. The theorem then follows from the lemma.

Theorem (Alphonse Antonio de Sarasa 1649) As area measured against the asymptote increases in arithmetic progression, the projections upon the asymptote increase in geometric sequence. Thus the areas form logarithms of the asymptote index.

For instance, for a standard position angle which runs from (1, 1) to (x, 1/x), one may ask "When is the hyperbolic angle equal to one?" The answer is the transcendental number x = e.

A squeeze with r = e moves the unit angle to one between (e, 1/e) and (ee, 1/ee) which subtends a sector also of area one. The geometric progression

e, e2, e3, ..., en, ...

corresponds to the asymptotic index achieved with each sum of areas

1,2,3, ..., n,...

which is a proto-typical arithmetic progression A + nd where A = 0 and d = 1 .

Lie transform

Following Pierre Ossian Bonnet's (1867) investigations on surfaces of constant curvatures, Sophus Lie (1879) found a way to derive new pseudospherical surfaces from a known one. Such surfaces satisfy the Sine-Gordon equation:

where are asymptotic coordinates of two principal tangent curves and their respective angle. Lie showed that if is a solution to the Sine-Gordon equation, then the following squeeze mapping (now known as Lie transform [13] ) indicates other solutions of that equation: [14]

Lie (1883) noticed its relation to two other transformations of pseudospherical surfaces: [15] The Bäcklund transform (introduced by Albert Victor Bäcklund in 1883) can be seen as the combination of a Lie transform with a Bianchi transform (introduced by Luigi Bianchi in 1879.) Such transformations of pseudospherical surfaces were discussed in detail in the lectures on differential geometry by Gaston Darboux (1894), [16] Luigi Bianchi (1894), [17] or Luther Pfahler Eisenhart (1909). [18]

It is known that the Lie transforms (or squeeze mappings) correspond to Lorentz boosts in terms of light-cone coordinates, as pointed out by Terng and Uhlenbeck (2000): [13]

Sophus Lie observed that the SGE [Sinus-Gordon equation] is invariant under Lorentz transformations. In asymptotic coordinates, which correspond to light cone coordinates, a Lorentz transformation is .

This can be represented as follows:

where k corresponds to the Doppler factor in Bondi k-calculus, η is the rapidity.

See also

Related Research Articles

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Conformal map</span> Mathematical function which preserves angles

In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

<span class="mw-page-title-main">Rotation (mathematics)</span> Motion of a certain space that preserves at least one point

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

In algebra, a split complex number is based on a hyperbolic unitj satisfying A split-complex number has two real number components x and y, and is written The conjugate of z is Since the product of a number z with its conjugate is an isotropic quadratic form.

<span class="mw-page-title-main">Hyperbolic orthogonality</span> Relation of space and time in relativity theory

In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity.

<span class="mw-page-title-main">Hyperbolic sector</span> Region of the Cartesian plane bounded by a hyperbola and two radii

A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola. A hyperbolic sector in standard position has a = 1 and b > 1.

<span class="mw-page-title-main">Hyperbolic angle</span> Argument of the hyperbolic functions

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

<span class="mw-page-title-main">Hyperbolic coordinates</span> Geometric mean and hyperbolic angle as coordinates in quadrant I

In mathematics, hyperbolic coordinates are a method of locating points in quadrant I of the Cartesian plane

In mathematics, a function of a motor variable is a function with arguments and values in the split-complex number plane, much as functions of a complex variable involve ordinary complex numbers. William Kingdon Clifford coined the term motor for a kinematic operator in his "Preliminary Sketch of Biquaternions" (1873). He used split-complex numbers for scalars in his split-biquaternions. Motor variable is used here in place of split-complex variable for euphony and tradition.

In mathematics, a versor is a quaternion of norm one. Each versor has the form

<span class="mw-page-title-main">Grégoire de Saint-Vincent</span> Belgian Jesuit and mathematician (1584–1667)

Grégoire de Saint-Vincent - in Latin : Gregorius a Sancto Vincentio, in Dutch : Gregorius van St-Vincent - was a Flemish Jesuit and mathematician. He is remembered for his work on quadrature of the hyperbola.

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

Rapidity is a measure for relativistic velocity. For one-dimensional motion, rapidities are additive. However, velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Unit hyperbola</span> Geometric figure

In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length

<span class="mw-page-title-main">Cayley–Klein metric</span>

In mathematics, a Cayley–Klein metric is a metric on the complement of a fixed quadric in a projective space which is defined using a cross-ratio. The construction originated with Arthur Cayley's essay "On the theory of distance" where he calls the quadric the absolute. The construction was developed in further detail by Felix Klein in papers in 1871 and 1873, and subsequent books and papers. The Cayley–Klein metrics are a unifying idea in geometry since the method is used to provide metrics in hyperbolic geometry, elliptic geometry, and Euclidean geometry. The field of non-Euclidean geometry rests largely on the footing provided by Cayley–Klein metrics.

Spherical wave transformations leave the form of spherical waves as well as the laws of optics and electrodynamics invariant in all inertial frames. They were defined between 1908 and 1909 by Harry Bateman and Ebenezer Cunningham, with Bateman giving the transformation its name. They correspond to the conformal group of "transformations by reciprocal radii" in relation to the framework of Lie sphere geometry, which were already known in the 19th century. Time is used as fourth dimension as in Minkowski space, so spherical wave transformations are connected to the Lorentz transformation of special relativity, and it turns out that the conformal group of spacetime includes the Lorentz group and the Poincaré group as subgroups. However, only the Lorentz/Poincaré groups represent symmetries of all laws of nature including mechanics, whereas the conformal group is related to certain areas such as electrodynamics. In addition, it can be shown that the conformal group of the plane is isomorphic to the Lorentz group.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

References

  1. Émile Borel (1914) Introduction Geometrique à quelques Théories Physiques, page 29, Gauthier-Villars, link from Cornell University Historical Math Monographs
  2. Mellen W. Haskell (1895) On the introduction of the notion of hyperbolic functions Bulletin of the American Mathematical Society 1(6):155–9,particularly equation 12, page 159
  3. Euclid Speidell (1688) Logarithmotechnia: the making of numbers called logarithms from Google Books
  4. Edwin Bidwell Wilson & Gilbert N. Lewis (1912) "The space-time manifold of relativity. The non-Euclidean geometry of mechanics and electromagnetics", Proceedings of the American Academy of Arts and Sciences 48:387507, footnote p. 401
  5. W. H. Greub (1967) Linear Algebra, Springer-Verlag. See pages 272 to 274
  6. Louis Kauffman (1985) "Transformations in Special Relativity", International Journal of Theoretical Physics 24:22336
  7. Herglotz, Gustav (1910) [1909], "Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper" [Wikisource translation: On bodies that are to be designated as "rigid" from the standpoint of the relativity principle ], Annalen der Physik, 336 (2): 408, Bibcode:1910AnP...336..393H, doi:10.1002/andp.19103360208
  8. Wolfgang Rindler, Essential Relativity, equation 29.5 on page 45 of the 1969 edition, or equation 2.17 on page 37 of the 1977 edition, or equation 2.16 on page 52 of the 2001 edition
  9. Daesoo Han, Young Suh Kim & Marilyn E. Noz (1997) "Jones-matrix formalism as a representation of the Lorentz group", Journal of the Optical Society of America A14(9):2290–8
  10. J. M. Ottino (1989) The Kinematics of Mixing: stretching, chaos, transport, page 29, Cambridge University Press
  11. Roman Stocker & A.E. Hosoi (2004) "Corner flow in free liquid films", Journal of Engineering Mathematics 50:26788
  12. H.K. Moffatt (1964) "Viscous and resistive eddies near a sharp corner", Journal of Fluid Mechanics 18:118
  13. 1 2 Terng, C. L., & Uhlenbeck, K. (2000). "Geometry of solitons" (PDF). Notices of the AMS. 47 (1): 17–25.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Lie, S. (1881) [1879]. "Selbstanzeige: Über Flächen, deren Krümmungsradien durch eine Relation verknüpft sind". Fortschritte der Mathematik. 11: 529–531. Reprinted in Lie's collected papers, Vol. 3, pp. 392–393.
  15. Lie, S. (1884) [1883]. "Untersuchungen über Differentialgleichungen IV". Christ. Forh.. Reprinted in Lie's collected papers, Vol. 3, pp. 556–560.
  16. Darboux, G. (1894). Leçons sur la théorie générale des surfaces. Troisième partie. Paris: Gauthier-Villars. pp.  381–382.
  17. Bianchi, L. (1894). Lezioni di geometria differenziale. Pisa: Enrico Spoerri. pp.  433–434.
  18. Eisenhart, L. P. (1909). A treatise on the differential geometry of curves and surfaces. Boston: Ginn and Company. pp.  289–290.