Subnet (mathematics)

Last updated

In topology and related areas of mathematics, a subnet is a generalization of the concept of subsequence to the case of nets. The analogue of "subsequence" for nets is the notion of a "subnet". The definition is not completely straightforward, but is designed to allow as many theorems about subsequences to generalize to nets as possible.

Contents

There are three non-equivalent definitions of "subnet". The first definition of a subnet was introduced by John L. Kelley in 1955 [1] and later, Stephen Willard introduced his own (non-equivalent) variant of Kelley's definition in 1970. [1] Subnets in the sense of Willard and subnets in the sense of Kelley are the most commonly used definitions of "subnet" [1] but they are each not equivalent to the concept of "subordinate filter", which is the analog of "subsequence" for filters (they are not equivalent in the sense that there exist subordinate filters on whose filter/subordinate–filter relationship cannot be described in terms of the corresponding net/subnet relationship). A third definition of "subnet" (not equivalent to those given by Kelley or Willard) that is equivalent to the concept of "subordinate filter" was introduced independently by Smiley (1957), Aarnes and Andenaes (1972), Murdeshwar (1983), and possibly others, although it is not often used. [1]

This article discusses the definition due to Willard (the other definitions are described in the article Filters in topology#Non–equivalence of subnets and subordinate filters).

Definitions

There are several different non-equivalent definitions of "subnet" and this article will use the definition introduced in 1970 by Stephen Willard, [1] which is as follows: If and are nets in a set from directed sets and respectively, then is said to be a subnet of (in the sense of Willard or a Willard–subnet [1] ) if there exists a monotone final function

such that

A function is monotone, order-preserving , and an order homomorphism if whenever then and it is called final if its image is cofinal in The set being cofinal in means that for every there exists some such that that is, for every there exists an such that [note 1]

Since the net is the function and the net is the function the defining condition may be written more succinctly and cleanly as either or where denotes function composition and is just notation for the function

Subnets versus subsequences

Importantly, a subnet is not merely the restriction of a net to a directed subset of its domain In contrast, by definition, a subsequence of a given sequence is a sequence formed from the given sequence by deleting some of the elements without disturbing the relative positions of the remaining elements. Explicitly, a sequence is said to be a subsequence of if there exists a strictly increasing sequence of positive integers such that for every (that is to say, such that ). The sequence can be canonically identified with the function defined by Thus a sequence is a subsequence of if and only if there exists a strictly increasing function such that

Subsequences are subnets

Every subsequence is a subnet because if is a subsequence of then the map defined by is an order-preserving map whose image is cofinal in its codomain and satisfies for all

Sequence and subnet but not a subsequence

The sequence is not a subsequence of although it is a subnet because the map defined by is an order-preserving map whose image is and satisfies for all [note 2]

While a sequence is a net, a sequence has subnets that are not subsequences. The key difference is that subnets can use the same point in the net multiple times and the indexing set of the subnet can have much larger cardinality. Using the more general definition where we do not require monotonicity, a sequence is a subnet of a given sequence, if and only if it can be obtained from some subsequence by repeating its terms and reordering them. [2]

Subnet of a sequence that is not a sequence

A subnet of a sequence is not necessarily a sequence. [3] For an example, let be directed by the usual order and define by letting be the ceiling of Then is an order-preserving map (because it is a non-decreasing function) whose image is a cofinal subset of its codomain. Let be any sequence (such as a constant sequence, for instance) and let for every (in other words, let ). This net is not a sequence since its domain is an uncountable set. However, is a subnet of the sequence since (by definition) holds for every Thus is a subnet of that is not a sequence.

Furthermore, the sequence is also a subnet of since the inclusion map (that sends ) is an order-preserving map whose image is a cofinal subset of its codomain and holds for all Thus and are (simultaneously) subnets of each another.

Subnets induced by subsets

Suppose is an infinite set and is a sequence. Then is a net on that is also a subnet of (take to be the inclusion map ). This subnet in turn induces a subsequence by defining as the smallest value in (that is, let and let for every integer ). In this way, every infinite subset of induces a canonical subnet that may be written as a subsequence. However, as demonstrated below, not every subnet of a sequence is a subsequence.

Applications

The definition generalizes some key theorems about subsequences:

Taking be the identity map in the definition of "subnet" and requiring to be a cofinal subset of leads to the concept of a cofinal subnet, which turns out to be inadequate since, for example, the second theorem above fails for the Tychonoff plank if we restrict ourselves to cofinal subnets.

Clustering and closure

If is a net in a subset and if is a cluster point of then In other words, every cluster point of a net in a subset belongs to the closure of that set.

If is a net in then the set of all cluster points of in is equal to [3]

where for each

Convergence versus clustering

If a net converges to a point then is necessarily a cluster point of that net. [3] The converse is not guaranteed in general. That is, it is possible for to be a cluster point of a net but for to not converge to However, if clusters at then there exists a subnet of that converges to This subnet can be explicitly constructed from and the neighborhood filter at as follows: make

into a directed set by declaring that

then and is a subnet of since the map

is a monotone function whose image is a cofinal subset of and

Thus, a point is a cluster point of a given net if and only if it has a subnet that converges to [3]

See also

Notes

  1. Some authors use a more general definition of a subnet. In this definition, the map is required to satisfy the condition: For every there exists a such that whenever Such a map is final but not necessarily monotone.
  2. Indeed, this is because and for every in other words, when considered as functions on the sequence is just the identity map on while

Citations

  1. 1 2 3 4 5 6 Schechter 1996, pp. 157–168.
  2. Gähler, Werner (1977). Grundstrukturen der Analysis I. Akademie-Verlag, Berlin., Satz 2.8.3, p. 81
  3. 1 2 3 4 Willard 2004, pp. 73–77.

Related Research Articles

In mathematics, a directed set is a nonempty set together with a reflexive and transitive binary relation , with the additional property that every pair of elements has an upper bound. In other words, for any and in there must exist in with and A directed set's preorder is called a direction.

In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space. Nets are primarily used in the fields of Analysis and Topology, where they are used to characterize many important topological properties that, sequences are unable to characterize. Nets are in one-to-one correspondence with filters.

In mathematics, specifically in real analysis, the Bolzano–Weierstrass theorem, named after Bernard Bolzano and Karl Weierstrass, is a fundamental result about convergence in a finite-dimensional Euclidean space . The theorem states that each infinite bounded sequence in has a convergent subsequence. An equivalent formulation is that a subset of is sequentially compact if and only if it is closed and bounded. The theorem is sometimes called the sequential compactness theorem.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

<span class="mw-page-title-main">Limit inferior and limit superior</span> Bounds of a sequence

In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting bounds on the sequence. They can be thought of in a similar fashion for a function. For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant. Limit inferior is also called infimum limit, limit infimum, liminf, inferior limit, lower limit, or inner limit; limit superior is also known as supremum limit, limit supremum, limsup, superior limit, upper limit, or outer limit.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematics, a limit point, accumulation point, or cluster point of a set in a topological space is a point that can be "approximated" by points of in the sense that every neighbourhood of with respect to the topology on also contains a point of other than itself. A limit point of a set does not itself have to be an element of There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence in a topological space is a point such that, for every neighbourhood of there are infinitely many natural numbers such that This definition of a cluster or accumulation point of a sequence generalizes to nets and filters.

In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the image is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In mathematics, a subset of a preordered set is said to be cofinal or frequent in if for every it is possible to find an element in that is "larger than ".

In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter for a point in a topological space is the collection of all neighbourhoods of

In the mathematical field of topology, a topological space is usually defined by declaring its open sets. However, this is not necessary, as there are many equivalent axiomatic foundations, each leading to exactly the same concept. For instance, a topological space determines a class of closed sets, of closure and interior operators, and of convergence of various types of objects. Each of these can instead be taken as the primary class of objects, with all of the others directly determined from that new starting point. For example, in Kazimierz Kuratowski's well-known textbook on point-set topology, a topological space is defined as a set together with a certain type of "closure operator," and all other concepts are derived therefrom. Likewise, the neighborhood-based axioms can be retraced to Felix Hausdorff's original definition of a topological space in Grundzüge der Mengenlehre.

In mathematics, a filter on a set is a family of subsets such that:

  1. and
  2. if and , then
  3. If , and , then

In the field of topology, a Fréchet–Urysohn space is a topological space with the property that for every subset the closure of in is identical to the sequential closure of in Fréchet–Urysohn spaces are a special type of sequential space.

<span class="mw-page-title-main">Filters in topology</span> Use of filters to describe and characterize all basic topological notions and results.

Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

References