Systematic element name

Last updated

A systematic element name is the temporary name assigned to an unknown or recently synthesized chemical element. A systematic symbol is also derived from this name.

Contents

In chemistry, a transuranic element receives a permanent name and symbol only after its synthesis has been confirmed. In some cases, such as the Transfermium Wars, controversies over the formal name and symbol have been protracted and highly political. In order to discuss such elements without ambiguity, the International Union of Pure and Applied Chemistry (IUPAC) uses a set of rules, adopted in 1978, to assign a temporary systematic name and symbol to each such element. This approach to naming originated in the successful development of regular rules for the naming of organic compounds.

IUPAC rules

The temporary names derive systematically from the element's atomic number, and apply only to 101  Z  999. [1] Each digit is translated into a "numerical root" according to the table. The roots are concatenated, and the name is completed by the suffix -ium . Some of the roots are Latin and others are Greek, to avoid two digits starting with the same letter (for example, the Greek-derived pent is used instead of the Latin-derived quint to avoid confusion with quad for 4). There are two elision rules designed to prevent odd-looking names.

Traditionally the suffix -ium was used only for metals (or at least elements that were expected to be metallic), and other elements used different suffixes: halogens used -ine and noble gases used -on instead. However, the systematic names use -ium for all elements regardless of group. Thus, elements 117 and 118 were ununseptium and ununoctium, not ununseptine and ununocton. [2] This does not apply to the trivial names these elements receive once confirmed; thus, elements 117 and 118 are now tennessine and oganesson , respectively. For these trivial names, all elements receive the suffix -ium except those in group 17, which receive -ine (like the halogens), and those in group 18, which receive -on (like the noble gases). [2] (That being said, tennessine and oganesson are expected to behave quite differently from their lighter congeners.)

The systematic symbol is formed by taking the first letter of each root, converting the first to a capital. This results in three-letter symbols instead of the one- or two-letter symbols used for named elements. The rationale is that any scheme producing two-letter symbols will have to deviate from full systematicity to avoid collisions with the symbols of the permanently named elements.

The Recommendations for the Naming of Elements of Atomic Numbers Greater than 100 can be found here.

DigitRootEtymologySymbolPronunciationExample
0nilLatin nihil ("nothing")n /nɪl/ unbinilium
1unLatin unus ("one")u /n/ unbiunium
2biLatin bis ("twice")b /b/ unbibium
3triLatin tres ("three")
Greek tria ("three")
t /tr/ unbitrium
4quadLatin quattuor ("four")q /kwɒd/ unbiquadium
5pentGreek pente ("five")p /pɛnt/ unbipentium
6hexGreek hex ("six")h /hɛks/ unbihexium
7septLatin septem ("seven")s /sɛpt/ unbiseptium
8octLatin octo ("eight")
Greek okto ("eight")
o /ɒkt/ unbioctium
9en(n)Greek ennea ("nine")e /ɛn/ unbiennium
Suffix-(i)umLatin -um (neuter singular)none /-iəm/
  • If bi or tri is followed by the ending -ium (i.e. the last digit is 2 or 3), the result is -bium or -trium, not -biium or -triium.
Example 1: element 122: unbibium (Ubb)
Example 2: element 123: unbitrium (Ubt)
  • If enn is followed by nil (i.e. the sequence -90- occurs), the result is -ennil-, not -ennnil-.
Example 3: element 190: unennilium (Uen)

As of 2019, all 118 discovered elements have received individual permanent names and symbols. [3] Therefore, systematic names and symbols are now used only for the undiscovered elements beyond element 118, oganesson. When such an element is discovered, it will keep its systematic name and symbol until its discovery meets the criteria of and is accepted by the IUPAC/IUPAP Joint Working Party, upon which the discoverers are invited to propose a permanent name and symbol. Once this name and symbol is proposed, there is still a comment period before they become official and replace the systematic name and symbol.

At the time the systematic names were recommended (1978), names had already been officially given to all elements up to atomic number 103, lawrencium. While systematic names were given for elements 101 (mendelevium), 102 (nobelium), and 103 (lawrencium), these were only as "minor alternatives to the trivial names already approved by IUPAC". [1] The following elements for some time only had systematic names as approved names, until their final replacement with trivial names after their discoveries were accepted.

Z SystematicFormalYear
SymbolNameSymbolNameUndisputed synthesis first publishedNamed
104UnqUnnilquadiumRf Rutherfordium 19691997
105UnpUnnilpentiumDb Dubnium 19701997
106UnhUnnilhexiumSg Seaborgium 19741997
107UnsUnnilseptiumBh Bohrium 19811997
108UnoUnniloctiumHs Hassium 19841997
109UneUnnilenniumMt Meitnerium 19821997
110UunUnunniliumDs Darmstadtium 19952003
111UuuUnununiumRg Roentgenium 19952004
112UubUnunbiumCn Copernicium 19962010
113UutUnuntriumNh Nihonium 20042016
114UuqUnunquadiumFl Flerovium 19992012
115UupUnunpentiumMc Moscovium 20042016
116UuhUnunhexiumLv Livermorium 20002012
117UusUnunseptiumTs Tennessine 20102016
118UuoUnunoctiumOg Oganesson 20062016

See also

Related Research Articles

A chemical element is a chemical substance that cannot be broken down into other substances by chemical reactions. The basic particle that constitutes a chemical element is the atom. Chemical elements are identified by the number of protons in the nuclei of their atoms, known as the element's atomic number. For example, oxygen has an atomic number of 8, meaning that each oxygen atom has 8 protons in its nucleus. Two or more atoms of the same element can combine to form molecules, in contrast to chemical compounds or mixtures, which contain atoms of different elements. Atoms can be transformed into different elements in nuclear reactions, which changes the atom's atomic number.

<span class="mw-page-title-main">Halogen</span> Group of chemical elements

The halogens are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17.

<span class="mw-page-title-main">Lawrencium</span> Chemical element, symbol Lr and atomic number 103

Lawrencium is a synthetic chemical element; it has symbol Lr and atomic number 103. It is named in honor of Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radioactive metal, lawrencium is the eleventh transuranic element and the last member of the actinide series. Like all elements with atomic number over 100, lawrencium can only be produced in particle accelerators by bombarding lighter elements with charged particles. Fourteen isotopes of lawrencium are currently known; the most stable is 266Lr with half-life 11 hours, but the shorter-lived 260Lr is most commonly used in chemistry because it can be produced on a larger scale.

<span class="mw-page-title-main">Periodic table</span> Tabular arrangement of the chemical elements ordered by atomic number

The periodic table, also known as the periodic table of the elements, arranges the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which states that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics.

<span class="mw-page-title-main">Synthetic element</span> Chemical elements that do not occur naturally

A synthetic element is one of 24 known chemical elements that do not occur naturally on Earth: they have been created by human manipulation of fundamental particles in a nuclear reactor, a particle accelerator, or the explosion of an atomic bomb; thus, they are called "synthetic", "artificial", or "man-made". The synthetic elements are those with atomic numbers 95–118, as shown in purple on the accompanying periodic table: these 24 elements were first created between 1944 and 2010. The mechanism for the creation of a synthetic element is to force additional protons into the nucleus of an element with an atomic number lower than 95. All known synthetic elements are unstable, but they decay at widely varying rates: the half-lives of their longest-lived isotopes range from microseconds to millions of years.

The transuranium elements are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of them are radioactively unstable and decay into other elements. With the exception of neptunium and plutonium which have been found in trace amounts in nature, none occur naturally on Earth and they are synthetic.

<span class="mw-page-title-main">Oganesson</span> Chemical element, symbol Og and atomic number 118

Oganesson is a synthetic chemical element; it has symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name honors the nuclear physicist Yuri Oganessian, who played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a person who was alive at the time of naming, the other being seaborgium, and the only element whose eponym is alive as of 2024.

<span class="mw-page-title-main">Chemical symbol</span> Abbreviations used in chemistry

Chemical symbols are the abbreviations used in chemistry for chemical elements, functional groups and chemical compounds. Element symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised.

Moscovium is a synthetic chemical element; it has symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. On 28 November 2016, it was officially named after the Moscow Oblast, in which the JINR is situated.

Tennessine is a synthetic chemical element; it has symbol Ts and atomic number 117. It has the second-highest atomic number and joint-highest atomic mass of all known elements, and is the penultimate element of the 7th period of the periodic table.

<span class="mw-page-title-main">Nihonium</span> Chemical element, symbol Nh and atomic number 113

Nihonium is a synthetic chemical element; it has symbol Nh and atomic number 113. It is extremely radioactive: its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide element in the p-block. It is a member of period 7 and group 13.

<span class="mw-page-title-main">Albert Ghiorso</span> American nuclear scientist

Albert Ghiorso was an American nuclear scientist and co-discoverer of a record 12 chemical elements on the periodic table. His research career spanned six decades, from the early 1940s to the late 1990s.

A period 7 element is one of the chemical elements in the seventh row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases: a new row is begun when chemical behavior begins to repeat, meaning that elements with similar behavior fall into the same vertical columns. The seventh period contains 32 elements, tied for the most with period 6, beginning with francium and ending with oganesson, the heaviest element currently discovered. As a rule, period 7 elements fill their 7s shells first, then their 5f, 6d, and 7p shells in that order, but there are exceptions, such as uranium.

<span class="mw-page-title-main">Group 3 element</span> Group of chemical elements

Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. It contains the four elements scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr). The group is also called the scandium group or scandium family after its lightest member.

In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in the Nomenclature of Organic Chemistry. Ideally, every possible organic compound should have a name from which an unambiguous structural formula can be created. There is also an IUPAC nomenclature of inorganic chemistry.

The names for chemical elements in East Asian languages, along with those for some chemical compounds, are among the newest words to enter the local vocabularies. Except for those metals well-known since antiquity, the names of most elements were created after modern chemistry was introduced to East Asia in the 18th and 19th centuries, with more translations being coined for those elements discovered later.

<span class="mw-page-title-main">Trivial name</span> Nonsystematic name for a chemical substance

In chemistry, a trivial name is a non-systematic name for a chemical substance. That is, the name is not recognized according to the rules of any formal system of chemical nomenclature such as IUPAC inorganic or IUPAC organic nomenclature. A trivial name is not a formal name and is usually a common name.

Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium. By definition, superheavy elements are also transuranium elements, i.e., having atomic numbers greater than that of uranium (92). Depending on the definition of group 3 adopted by authors, lawrencium may also be included to complete the 6d series.

Tennessine (117Ts) is the most-recently synthesized synthetic element, and much of the data is hypothetical. As for any synthetic element, a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotopes to be synthesized were 293Ts and 294Ts in 2009. The longer-lived isotope is 294Ts with a half-life of 51 ms.

Chemical elements may be named from various sources: sometimes based on the person who discovered it, or the place it was discovered. Some have Latin or Greek roots deriving from something related to the element, for example some use to which it may have been put.

References

  1. 1 2 "Element names >100".
  2. 1 2 Koppenol, W. (2016). "How to name new chemical elements" (PDF). Pure and Applied Chemistry. DeGruyter. doi:10.1515/pac-2015-0802. hdl: 10045/55935 . S2CID   102245448.
  3. "IUPAC Announces the Names of the Elements 113, 115, 117, and 118". IUPAC. 2016-11-30. Retrieved 2016-11-30.