Tatiana Rynearson

Last updated
Tatiana Rynearson
Tatiana Rynearson at Metcalf Institute.jpg
Rynearson lectures at the University of Rhode Island Metcalf Institute in 2020
Born
Alma mater University of Washington
Brown University
Scientific career
Institutions University of Rhode Island
University of Washington
Thesis Clonal diversity, population differentiation and bloom dynamics in the centric diatom, Ditylum brightwellii  (2003)

Tatiana Rynearson is an American oceanographer who is a professor at the University of Rhode Island. Her research considers plankton diversity and abundance. Rynearson has been on several research cruises, including trips to the North Sea, Puget Sound, the Gulf of Mexico and the North Atlantic.

Contents

Early life and education

Rynearson grew up in Ohio. She became interested in aquatic science as a junior at high school. [1] She was an undergraduate student at Brown University, where she studied aquatic sciences. [2] She was a graduate student at the University of Washington, where she studied the bloom dynamics in the centric diatom Ditylum brightwellii . [3] She remained at Washington as a postdoctoral researcher until she was appointed to the faculty at the University of Rhode Island in 2005. [4]

Research and career

Rynearson studies microbial ecology and evolutionary biology. [5] [6] She is particularly interested in diatoms - microscopically sized ocean plants, which help the ocean regulate global climate. [7] [8] She has studied the diversity of diatoms in the Narragansett Bay in Rhode Island. [1] [9] The Plankton of Narragansett Bay is one of the world's longest plankton studies, and has been collecting data every week since the 1950s. [9] In particular, she created genetic analysis methods that allow her to see the circuitry inside cells.[ citation needed ]

In 2016, Rynearson was part of an expedition on the Nathaniel B. Palmer research vessel. The mission departed from Punta Arenas with a specific focus on diatoms in the Southern Ocean. [7] The information she collected as combined with genetic information provided insight in how polar diatoms were impacted by environmental change. [7]

Rynearson has been involved with the Metcalf Institute, which focuses on science communication. [1] Rynearson was supported by the National Science Foundation ADVANCE program. [1]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Diatom</span> Class of microalgae, found in the oceans, waterways and soils of the world

A diatom is any member of a large group comprising several genera of algae, specifically microalgae, found in the oceans, waterways and soils of the world. Living diatoms make up a significant portion of the Earth's biomass: they generate about 20 to 50 percent of the oxygen produced on the planet each year, take in over 6.7 billion tonnes of silicon each year from the waters in which they live, and constitute nearly half of the organic material found in the oceans. The shells of dead diatoms can reach as much as a half-mile deep on the ocean floor, and the entire Amazon basin is fertilized annually by 27 million tons of diatom shell dust transported by transatlantic winds from the African Sahara, much of it from the Bodélé Depression, which was once made up of a system of fresh-water lakes.

<span class="mw-page-title-main">Phytoplankton</span> Autotrophic members of the plankton ecosystem

Phytoplankton are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words φυτόν, meaning 'plant', and πλαγκτός, meaning 'wanderer' or 'drifter'.

<i>Thalassiosira pseudonana</i> Species of single-celled organism

Thalassiosira pseudonana is a species of marine centric diatoms. It was chosen as the first eukaryotic marine phytoplankton for whole genome sequencing. T. pseudonana was selected for this study because it is a model for diatom physiology studies, belongs to a genus widely distributed throughout the world's oceans, and has a relatively small genome at 34 mega base pairs. Scientists are researching on diatom light absorption, using the marine diatom of Thalassiosira. The diatom requires a high enough concentration of CO2 in order to utilize C4 metabolism (Clement et al. 2015).

<i>Marnaviridae</i> Family of viruses

Marnaviridae is a family of positive-stranded RNA viruses in the order Picornavirales that infect various photosynthetic marine protists. Members of the family have non-enveloped, icosahedral capsids. Replication occurs in the cytoplasm and causes lysis of the host cell. The first species of this family that was isolated is Heterosigma akashiwo RNA virus (HaRNAV) in the genus Marnavirus, which infects the toxic bloom-forming Raphidophyte alga, Heterosigma akashiwo. As of 2021, there are twenty species across seven genera in this family, as well as many other related virus sequences discovered through metagenomic sequencing that are currently unclassified.

<i>Pseudo-nitzschia</i> Genus of marine planktonic diatoms

Pseudo-nitzschia is a marine planktonic diatom genus that accounts for 4.4% of pennate diatoms found worldwide. Some species are capable of producing the neurotoxin domoic acid (DA), which is responsible for the neurological disorder in humans known as amnesic shellfish poisoning (ASP). Currently, 58 species are known, 28 of which have been shown to produced DA. It was originally hypothesized that only dinoflagellates could produce harmful algal toxins, but a deadly bloom of Pseudo-nitzschia occurred in 1987 in the bays of Prince Edward Island, Canada, and led to an outbreak of ASP. Over 100 people were affected by this outbreak after consuming contaminated mussels; three people died. Since this event, no additional deaths have been attributed to ASP, though the prevalence of toxic diatoms and DA has increased worldwide. This anomaly is likely due to increased awareness of harmful algal blooms (HABs) and their implications for human and ecosystem health.

<i>Chrysochromulina</i> Genus of single-celled organisms

Chrysochromulina is a genus of haptophytes. This phytoplankton is distributed globally in brackish and marine waters across approximately 60 known species. All Chrysochromulina species are phototrophic, however some have been shown to be mixotrophic, including exhibiting phagotrophy under certain environmental conditions. The cells are small, characterized by having scales, and typically observed using electron microscopy. Some species, under certain environmental conditions have been shown to produce toxic compounds that are harmful to larger marine life including fish.

<span class="mw-page-title-main">Marine microorganisms</span> Any life form too small for the naked human eye to see that lives in a marine environment

Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify viruses as microorganisms, but others consider these as non-living.

Thalassiosira weissflogii is a species of centric diatoms, a unicellular microalga. It is found in marine environments and also in inland waters in many parts of the world. It is actively studied because it may use C4-plant style strategies to increase its photosynthetic efficiency.

<span class="mw-page-title-main">Planktivore</span> Aquatic organism that feeds on planktonic food

A planktivore is an aquatic organism that feeds on planktonic food, including zooplankton and phytoplankton. Planktivorous organisms encompass a range of some of the planet's smallest to largest multicellular animals in both the present day and in the past billion years; basking sharks and copepods are just two examples of giant and microscopic organisms that feed upon plankton. Planktivory can be an important mechanism of top-down control that contributes to trophic cascades in aquatic and marine systems. There is a tremendous diversity of feeding strategies and behaviors that planktivores utilize to capture prey. Some planktivores utilize tides and currents to migrate between estuaries and coastal waters; other aquatic planktivores reside in lakes or reservoirs where diverse assemblages of plankton are present, or migrate vertically in the water column searching for prey. Planktivore populations can impact the abundance and community composition of planktonic species through their predation pressure, and planktivore migrations facilitate nutrient transport between benthic and pelagic habitats.

<i>Ditylum brightwellii</i> Species of diatom

Ditylum brightwellii is a species of cosmopolitan marine centric diatoms. It is a unicellular photosynthetic autotroph that has the ability to divide rapidly and contribute to spring phytoplankton blooms.

<span class="mw-page-title-main">Thalassiosirales</span> Order of single-celled organisms

Thalassiosirales is an order of centric diatoms. The order currently contains 471 species. Species in the order Thalassiosirales are common in brackish, nearshore, and open-ocean habitats, with approximately the same number of freshwater and marine species.

<span class="mw-page-title-main">Thalassiosiraceae</span> Family of single-celled organisms

Thalassiosiraceae is a family of diatoms in the order Thalassiosirales. The family of Thalassiosiraceae have the unique quality of having a flat valve face. These diatoms are common in brackish, nearshore, and open-ocean habitats, with approximately the same number of freshwater and marine species. Thalassiosiraceae are a centric diatom full of fultoportula. These can often be mistaken for Areola. These belong to many diatom families and can be found in different forms such as the different Areolae that can be found on Navicula or Gomphoneis known as lineolate and punctate. Unlike naviculaceae who are symmetrical in shape some Thalassiosiraceae take on being tangentially undulate.

<i>Thalassiosira</i> Genus of single-celled organisms

Thalassiosira is a genus of centric diatoms, comprising over 100 marine and freshwater species. It is a diverse group of photosynthetic eukaryotes that make up a vital part of marine and freshwater ecosystems, in which they are key primary producers and essential for carbon cycling

<span class="mw-page-title-main">Marine protists</span> Protists that live in saltwater or brackish water

Marine protists are defined by their habitat as protists that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Life originated as marine single-celled prokaryotes and later evolved into more complex eukaryotes. Eukaryotes are the more developed life forms known as plants, animals, fungi and protists. Protists are the eukaryotes that cannot be classified as plants, fungi or animals. They are mostly single-celled and microscopic. The term protist came into use historically as a term of convenience for eukaryotes that cannot be strictly classified as plants, animals or fungi. They are not a part of modern cladistics because they are paraphyletic.

Sonya Dyhrman is an earth and environmental sciences professor who studies the physiology of phytoplankton and their role within marine ecosystems. She is also a fellow of the American Academy of Microbiology.

Greta Albrecht Fryxell was a marine scientist known for her work on the biology and taxonomy of diatoms. In 1996, she was elected a fellow of the American Association for the Advancement of Science.

Linda Karen Medlin is a molecular biologist known for her work on diatoms. She is an elected member of the Norwegian Academy of Science and Letters.

Ana María Gayoso was an Argentine marine biologist, a specialist in study of marine phytoplankton, best known for being the first scientist to describe phytoplankton in the Bahía Blanca Estuary, and to initiate the sustained long-term oceanographic dataset in this ecosystem. She made significant contributions to the understanding of harmful algal blooms caused by toxic dinoflagellate species in the Patagonian gulfs, and was the first scientist to describe high abundances of the coccolithophore Emiliania huxleyi in the Argentine Sea, a key component in the primary productivity along the Patagonian Shelf Break front in the SW South Atlantic. She started the most extensive (1978-present) long-term database of phytoplankton and physico-chemical variables in South America, in a fixed monitoring site in the Bahía Blanca Estuary. She died on 28 December 2004 in Puerto Madryn.

<i>Skeletonema costatum</i> Species of single-celled organism

Skeletonema costatum is a cosmopolitan centric diatom that belongs to the genus Skeletonema. It was first described by R. K. Greville, who originally named it Melosira costata, in 1866. It was later renamed by Cleve in 1873 and was more narrowly defined by Zingone et al. and Sarno et al. Skeletonemacostatum is the most well known species of the genus Skeletonema and is often one of the dominant species responsible for red tide events.

Susanne Menden-Deuer is an oceanographer and marine scientist known for her work on marine food webs, including their structure and function. As of 2022 she is president-elect of the Association for the Sciences of Limnology and Oceanography.

References

  1. 1 2 3 4 "Tatiana Rynearson". Graduate School of Oceanography. Retrieved 2021-10-16.
  2. "Tatiana Rynearson". S.T.R.E.S. 2013-05-03. Retrieved 2021-10-16.
  3. Rynearson, Tatiana A (2003). Clonal diversity, population differentiation and bloom dynamics in the centric diatom, Ditylum brightwellii (Thesis). OCLC   52543036.
  4. "ORCID". orcid.org. Retrieved 2023-06-08.
  5. "Tatiana Rynearson" . Retrieved 2021-10-16.
  6. Rynearson, Tatiana A. (2017-12-01). "Navigating in a sea of genes". Science. 358 (6367): 1129–1130. Bibcode:2017Sci...358.1129R. doi:10.1126/science.aar3431. PMID   29191892. S2CID   27695360.
  7. 1 2 3 "Three women scientists from URI to lead expeditions this year to Antarctica" . Retrieved 2021-10-16.
  8. "Spring plankton bloom hitches ride to sea's depths on ocean eddies". www.nsf.gov. Retrieved 2021-10-16.
  9. 1 2 "The University of Rhode Island" . Retrieved 2021-10-16.