Tropical geometry

Last updated

A tropical cubic curve Cubique tropicale min.svg
A tropical cubic curve

In mathematics, tropical geometry is the study of polynomials and their geometric properties when addition is replaced with minimization and multiplication is replaced with ordinary addition:

Contents

So for example, the classical polynomial would become . Such polynomials and their solutions have important applications in optimization problems, for example the problem of optimizing departure times for a network of trains.

Tropical geometry is a variant of algebraic geometry in which polynomial graphs resemble piecewise linear meshes, and in which numbers belong to the tropical semiring instead of a field. Because classical and tropical geometry are closely related, results and methods can be converted between them. Algebraic varieties can be mapped to a tropical counterpart and, since this process still retains some geometric information about the original variety, it can be used to help prove and generalize classical results from algebraic geometry, such as the Brill–Noether theorem, using the tools of tropical geometry. [1]

History

The basic ideas of tropical analysis were developed independently using the same notation by mathematicians working in various fields. [2] The central ideas of tropical geometry appeared in different forms in a number of earlier works. For example, Victor Pavlovich Maslov introduced a tropical version of the process of integration. He also noticed that the Legendre transformation and solutions of the Hamilton–Jacobi equation are linear operations in the tropical sense. [3] However, only since the late 1990s has an effort been made to consolidate the basic definitions of the theory. This was motivated by its application to enumerative algebraic geometry, with ideas from Maxim Kontsevich [4] and works by Grigory Mikhalkin [5] among others.

The adjective tropical was coined by French mathematicians in honor of the Hungarian-born Brazilian computer scientist Imre Simon, who wrote on the field. Jean-Éric Pin attributes the coinage to Dominique Perrin, [6] whereas Simon himself attributes the word to Christian Choffrut. [7]

Algebra background

Tropical geometry is based on the tropical semiring. This is defined in two ways, depending on max or min convention.

The min tropical semiring is the semiring , with the operations:

The operations and are referred to as tropical addition and tropical multiplication respectively. The identity element for is , and the identity element for is 0.

Similarly, the max tropical semiring is the semiring , with operations:

The identity element for is , and the identity element for is 0.

These semirings are isomorphic, under negation , and generally one of these is chosen and referred to simply as the tropical semiring. Conventions differ between authors and subfields: some use the min convention, some use the max convention.

The tropical semiring operations model how valuations behave under addition and multiplication in a valued field.

Some common valued fields encountered in tropical geometry (with min convention) are:

Tropical polynomials

A tropical polynomial is a function that can be expressed as the tropical sum of a finite number of monomial terms. A monomial term is a tropical product (and/or quotient) of a constant and variables from . Thus a tropical polynomial F is the minimum of a finite collection of affine-linear functions in which the variables have integer coefficients, so it is concave, continuous, and piecewise linear. [8]

Given a polynomial f in the Laurent polynomial ring where K is a valued field, the tropicalization of f, denoted , is the tropical polynomial obtained from f by replacing multiplication and addition by their tropical counterparts and each constant in K by its valuation. That is, if

then

The set of points where a tropical polynomial F is non-differentiable is called its associated tropical hypersurface, denoted (in analogy to the vanishing set of a polynomial). Equivalently, is the set of points where the minimum among the terms of F is achieved at least twice. When for a Laurent polynomial f, this latter characterization of reflects the fact that at any solution to , the minimum valuation of the terms of f must be achieved at least twice in order for them all to cancel. [9]

Tropical varieties

Definitions

For X an algebraic variety in the algebraic torus , the tropical variety of X or tropicalization of X, denoted , is a subset of that can be defined in several ways. The equivalence of these definitions is referred to as the Fundamental Theorem of Tropical Geometry. [9]

Intersection of tropical hypersurfaces

Let be the ideal of Laurent polynomials that vanish on X in . Define

When X is a hypersurface, its vanishing ideal is a principal ideal generated by a Laurent polynomial f, and the tropical variety is precisely the tropical hypersurface .

Every tropical variety is the intersection of a finite number of tropical hypersurfaces. A finite set of polynomials is called a tropical basis for X if is the intersection of the tropical hypersurfaces of . In general, a generating set of is not sufficient to form a tropical basis. The intersection of a finite number of a tropical hypersurfaces is called a tropical prevariety and in general is not a tropical variety. [9]

Initial ideals

Choosing a vector in defines a map from the monomial terms of to by sending the term m to . For a Laurent polynomial , define the initial form of f to be the sum of the terms of f for which is minimal. For the ideal , define its initial ideal with respect to to be

Then define

Since we are working in the Laurent ring, this is the same as the set of weight vectors for which does not contain a monomial.

When K has trivial valuation, is precisely the initial ideal of with respect to the monomial order given by a weight vector . It follows that is a subfan of the Gröbner fan of .

Image of the valuation map

Suppose that X is a variety over a field K with valuation v whose image is dense in (for example a field of Puiseux series). By acting coordinate-wise, v defines a map from the algebraic torus to . Then define

where the overline indicates the closure in the Euclidean topology. If the valuation of K is not dense in , then the above definition can be adapted by extending scalars to larger field which does have a dense valuation.

This definition shows that is the non-Archimedean amoeba over an algebraically closed non-Archimedean field K. [10]

If X is a variety over , can be considered as the limiting object of the amoeba as the base t of the logarithm map goes to infinity. [11]

Polyhedral complex

The following characterization describes tropical varieties intrinsically without reference to algebraic varieties and tropicalization. A set V in is an irreducible tropical variety if it is the support of a weighted polyhedral complex of pure dimension d that satisfies the zero-tension condition and is connected in codimension one. When d is one, the zero-tension condition means that around each vertex, the weighted-sum of the out-going directions of edges equals zero. For higher dimension, sums are taken instead around each cell of dimension after quotienting out the affine span of the cell. [8] The property that V is connected in codimension one means for any two points lying on dimension d cells, there is a path connecting them that does not pass through any cells of dimension less than . [12]

Tropical curves

The study of tropical curves (tropical varieties of dimension one) is particularly well developed and is strongly related to graph theory. For instance, the theory of divisors of tropical curves are related to chip-firing games on graphs associated to the tropical curves. [13]

Many classical theorems of algebraic geometry have counterparts in tropical geometry, including:

Oleg Viro used tropical curves to classify real curves of degree 7 in the plane up to isotopy. His method of patchworking gives a procedure to build a real curve of a given isotopy class from its tropical curve.

Applications

A tropical line appeared in Paul Klemperer's design of auctions used by the Bank of England during the financial crisis in 2007. [17] Yoshinori Shiozawa defined subtropical algebra as max-times or min-times semiring (instead of max-plus and min-plus). He found that Ricardian trade theory (international trade without input trade) can be interpreted as subtropical convex algebra. [18] Tropical geometry has also been used for analyzing the complexity of feedforward neural networks with ReLU activation. [19]

Moreover, several optimization problems arising for instance in job scheduling, location analysis, transportation networks, decision making and discrete event dynamical systems can be formulated and solved in the framework of tropical geometry. [20] A tropical counterpart of the Abel–Jacobi map can be applied to a crystal design. [21] The weights in a weighted finite-state transducer are often required to be a tropical semiring. Tropical geometry can show self-organized criticality. [22]

See also

Notes

  1. Hartnett, Kevin (5 September 2018). "Tinkertoy Models Produce New Geometric Insights". Quanta Magazine . Retrieved 12 December 2018.
  2. See Cuninghame-Green, Raymond A. (1979). Minimax algebra. Lecture Notes in Economics and Mathematical Sciences. Vol. 166. Springer. ISBN   978-3-540-09113-4 and references therein.
  3. Maslov, Victor (1987). "On a new superposition principle for optimization problems". Russian Mathematical Surveys . 42 (3): 43–54. Bibcode:1987RuMaS..42...43M. doi:10.1070/RM1987v042n03ABEH001439. S2CID   250889913.
  4. Kontsevich, Maxim; Soibelman, Yan (7 November 2000). "Homological mirror symmetry and torus fibrations". arXiv: math/0011041 .
  5. Mikhalkin, Grigory (2005). "Enumerative tropical algebraic geometry in R2" (PDF). Journal of the American Mathematical Society . 18 (2): 313–377. arXiv: math/0312530 . doi:10.1090/S0894-0347-05-00477-7.
  6. Pin, Jean-Eric (1998). "Tropical semirings" (PDF). In Gunawardena, J. (ed.). Idempotency. Publications of the Newton Institute. Vol. 11. Cambridge University Press. pp. 50–69. doi:10.1017/CBO9780511662508.004. ISBN   9780511662508.
  7. Simon, Imre (1988). "Recognizable sets with multiplicities in the tropical semiring". Mathematical Foundations of Computer Science 1988. Lecture Notes in Computer Science. Vol. 324. pp. 107–120. doi:10.1007/BFb0017135. ISBN   978-3-540-50110-7.
  8. 1 2 Speyer, David; Sturmfels, Bernd (2009), "Tropical mathematics" (PDF), Mathematics Magazine, 82 (3): 163–173, doi:10.1080/0025570X.2009.11953615, S2CID   15278805
  9. 1 2 3 Maclagan, Diane; Sturmfels, Bernd (2015). Introduction to Tropical Geometry. American Mathematical Society. ISBN   9780821851982.
  10. Mikhalkin, Grigory (2004). "Amoebas of algebraic varieties and tropical geometry". In Donaldson, Simon; Eliashberg, Yakov; Gromov, Mikhael (eds.). Different faces of geometry. International Mathematical Series. Vol. 3. New York, NY: Kluwer Academic/Plenum Publishers. pp. 257–300. ISBN   978-0-306-48657-9. Zbl   1072.14013.
  11. Katz, Eric (2017), "What is Tropical Geometry?" (PDF), Notices of the American Mathematical Society , 64 (4): 380–382, doi: 10.1090/noti1507
  12. Cartwright, Dustin; Payne, Sam (2012), "Connectivity of tropicalizations", Mathematical Research Letters, 19 (5): 1089–1095, arXiv: 1204.6589 , Bibcode:2012arXiv1204.6589C, doi:10.4310/MRL.2012.v19.n5.a10, S2CID   51767353
  13. Hladký, Jan; Králʼ, Daniel; Norine, Serguei (1 September 2013). "Rank of divisors on tropical curves". Journal of Combinatorial Theory, Series A . 120 (7): 1521–1538. arXiv: 0709.4485 . doi:10.1016/j.jcta.2013.05.002. ISSN   0097-3165. S2CID   3045053.
  14. Tabera, Luis Felipe (1 January 2005). "Tropical constructive Pappus' theorem". International Mathematics Research Notices . 2005 (39): 2373–2389. arXiv: math/0409126 . doi:10.1155/IMRN.2005.2373. ISSN   1073-7928. S2CID   14250249.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. Kerber, Michael; Gathmann, Andreas (1 May 2008). "A Riemann–Roch theorem in tropical geometry". Mathematische Zeitschrift . 259 (1): 217–230. arXiv: math/0612129 . doi:10.1007/s00209-007-0222-4. ISSN   1432-1823. S2CID   15239772.
  16. Chan, Melody; Sturmfels, Bernd (2013). "Elliptic curves in honeycomb form". In Brugallé, Erwan (ed.). Algebraic and combinatorial aspects of tropical geometry. Proceedings based on the CIEM workshop on tropical geometry, International Centre for Mathematical Meetings (CIEM), Castro Urdiales, Spain, December 12–16, 2011. Contemporary Mathematics. Vol. 589. Providence, RI: American Mathematical Society. pp. 87–107. arXiv: 1203.2356 . Bibcode:2012arXiv1203.2356C. ISBN   978-0-8218-9146-9. Zbl   1312.14142.
  17. "How geometry came to the rescue during the banking crisis". Department of Economics, University of Oxford. Retrieved 24 March 2014.
  18. Shiozawa, Yoshinori (2015). "International trade theory and exotic algebras". Evolutionary and Institutional Economics Review. 12: 177–212. doi:10.1007/s40844-015-0012-3. S2CID   155827635. This is a digest of Y. Shiozawa, "Subtropical Convex Geometry as the Ricardian Theory of International Trade" draft paper.
  19. Zhang, Liwen; Naitzat, Gregory; Lim, Lek-Heng (2018). "Tropical Geometry of Deep Neural Networks". Proceedings of the 35th International Conference on Machine Learning. 35th International Conference on Machine Learning. pp. 5824–5832.
  20. Krivulin, Nikolai (2014). "Tropical optimization problems". In Leon A. Petrosyan; David W. K. Yeung; Joseph V. Romanovsky (eds.). Advances in Economics and Optimization: Collected Scientific Studies Dedicated to the Memory of L. V. Kantorovich. New York: Nova Science Publishers. pp. 195–214. arXiv: 1408.0313 . ISBN   978-1-63117-073-7.
  21. Sunada, T. (2012). Topological Crystallography: With a View Towards Discrete Geometric Analysis. Surveys and Tutorials in the Applied Mathematical Sciences. Vol. 6. Springer Japan. ISBN   9784431541769.
  22. Kalinin, N.; Guzmán-Sáenz, A.; Prieto, Y.; Shkolnikov, M.; Kalinina, V.; Lupercio, E. (15 August 2018). "Self-organized criticality and pattern emergence through the lens of tropical geometry". Proceedings of the National Academy of Sciences of the United States of America . 115 (35): E8135–E8142. arXiv: 1806.09153 . Bibcode:2018PNAS..115E8135K. doi: 10.1073/pnas.1805847115 . ISSN   0027-8424. PMC   6126730 . PMID   30111541.

Related Research Articles

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of are "outside"

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a specialization of the tensor product from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis. The Kronecker product is to be distinguished from the usual matrix multiplication, which is an entirely different operation. The Kronecker product is also sometimes called matrix direct product.

In idempotent analysis, the tropical semiring is a semiring of extended real numbers with the operations of minimum and addition replacing the usual ("classical") operations of addition and multiplication, respectively.

In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

In multilinear algebra, the tensor rank decomposition or the decomposition of a tensor is the decomposition of a tensor in terms of a sum of minimum tensors. This is an open problem.

In mathematics, the Newton polytope is an integral polytope associated with a multivariate polynomial. It can be used to analyze the polynomial's behavior when specific variables are considered negligible relative to the others. Specifically, given a vector of variables and a finite family of pairwise distinct vectors from each encoding the exponents within a monomial, consider the multivariate polynomial

In stochastic analysis, a rough path is a generalization of the notion of smooth path allowing to construct a robust solution theory for controlled differential equations driven by classically irregular signals, for example a Wiener process. The theory was developed in the 1990s by Terry Lyons. Several accounts of the theory are available.

In algebraic geometry, a derived scheme is a homotopy-theoretic generalization of a scheme in which classical commutative rings are replaced with derived versions such as cdgas, commutative simplicial rings, or commutative ring spectra.

In algebra and algebraic geometry, given a commutative Noetherian ring and an ideal in it, the n-th symbolic power of is the ideal

In tropical analysis, tropical cryptography refers to the study of a class of cryptographic protocols built upon tropical algebras. In many cases, tropical cryptographic schemes have arisen from adapting classical (non-tropical) schemes to instead rely on tropical algebras. The case for the use of tropical algebras in cryptography rests on at least two key features of tropical mathematics: in the tropical world, there is no classical multiplication, and the problem of solving systems of tropical polynomial equations has been shown to be NP-hard.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

References

Further reading