Vestibular lamina

Last updated

The vestibular lamina is responsible for the formation of the vestibule (the space bordered by the junction of the gingiva and the tissue of the inner cheek) and arises from a group of cells called the primary epithelial band. This band is created at about 37 days of development in utero. [1] The vestibular lamina forms shortly after the dental lamina and is positioned right in front of it. The vestibule is formed by the proliferation of the vestibular lamina into the ectomesenchyme. [1] The vestibular lamina is usually contrasted with the dental lamina, which develops concurrently and is involved with developing teeth. Both the vestibular lamina and the dental lamina arise from a group of epithelial cells, called the primary epithelial band. [1]

Contents

The vestibular lamina develops at 6th week of the intrauterine life as a result of proliferation of the primitive ectoderm that lines the primitive oral cavity. [2] The cells enlarge and then degenerate to form a cleft that separates the lips and cheeks at one side from the developing jaws and teeth at the other side. This cleft is the oral vestibule.

Development

The proliferation of the lining of the stomodeum (ectoderm) gives rise to the oral epithelium. [3] During the initiation stage of early tooth development (6 weeks in utero), the oral epithelium goes through mitosis and condenses to form a primary epithelial band. In the 7th week in utero, the primary epithelial band cells continue to proliferate and invaginate. They then degenerate to form the vestibular sulcus that separates the lips and cheeks from the jaw and teeth, hence forming the vestibular lamina at the buccal/labial side of the oral cavity. Concurrently, the dental lamina [4] is also being developed from the primary epithelial band at the lingual/palatal side of the oral cavity for morphogenesis and histogenesis of the development of the teeth.

Functions and Relationship with Dental Lamina

At about the 7th week in utero, [5] the dental lamina is produced, and it serves as the primordium for the ectodermal portion of the deciduous teeth. Later during the development of the jaws, permanent molars arise directly from the distal extension of the dental lamina. The vestibular lamina is the thickening of oral epithelium in a facial [6] or buccal direction from the dental lamina. Meanwhile, a cleft will form a groove that becomes the area of the mucobuccal or mucolabial fold in the future vestibule. Furthermore, vestibular lamina will subsequently hollow and forms the oral vestibule between the alveolar portion of the jaws and the lips and cheeks. Recent studies have found that both the dental lamina and vestibular laminae jointly give rise to the large tooth primordia in the cheek region of the maxilla. Also, in mice, human and sheep, the vestibular lamina and dental lamina originate from a common epithelial placode- odontogenic epithelial zone which is in the upper lip region. [7]        

Clinical Considerations

To date, there is little clinical evidence regarding the clinical implications of vestibular lamina to date. However, since the vestibular lamina is responsible for the formation of oral vestibule, a correlation might be suggested between the poor development of vestibular lamina and a number of clinical implications - namely that shallow vestibules may negatively impact on denture retention, cause difficulty in brushing teeth, and also contribute to gingival recession.

Denture Retention (secondary retention)

The surrounding musculature and the shape of denture borders and flanges may affect the degree of retention. Factors affecting denture retention may be regarded as secondary retention. [8] In this case, a shallow vestibule may lead to resistance against proper denture fitting. [8]

Polished surfaces of the denture should therefore be properly shaped for patients with atypical oral and facial musculature. The occlusal plane should also be at the correct level to ensure that the arch form of the teeth is in the neutral zone. [8] The denture bases are properly extended to cover the maximum area as possible.

When patients encounter difficulty or discomfort chewing or brushing, vestibular deepening can be considered but this is uncommon( [9] [10] [11] ).

Gingival Recession

A shallow vestibule can also contribute towards gingival recession because of dissipation of the gingival attachment due to less space. [9] [11] [10] Periodontal plastic surgery focuses on correction or elimination of problems related to gingival recession, shallow vestibule or lack of attached gingiva. These can either be functional or purely aesthetic procedures. [10]

Free gingival autograft is one of the more common techniques used for a gingival recession in areas of inadequate attached gingiva in the mandibular anterior region. [10] Conversely, coronally repositioned flaps for the treatment of gingival recession will lead to decreased vestibular depth which may impact oral hygiene or denture retention. [9] [11]

Related Research Articles

<span class="mw-page-title-main">Human tooth</span> Calcified whitish structure in humans mouths used to break down food

Human teeth function to mechanically break down items of food by cutting and crushing them in preparation for swallowing and digesting. As such, they are considered part of the human digestive system. Humans have four types of teeth: incisors, canines, premolars, and molars, which each have a specific function. The incisors cut the food, the canines tear the food and the molars and premolars crush the food. The roots of teeth are embedded in the maxilla or the mandible and are covered by gums. Teeth are made of multiple tissues of varying density and hardness.

<span class="mw-page-title-main">Gums</span> Mouth anatomy

The gums or gingiva consist of the mucosal tissue that lies over the mandible and maxilla inside the mouth. Gum health and disease can have an effect on general health.

<span class="mw-page-title-main">Dental implant</span> Surgical component that interfaces with the bone of the jaw

A dental implant is a prosthesis that interfaces with the bone of the jaw or skull to support a dental prosthesis such as a crown, bridge, denture, or facial prosthesis or to act as an orthodontic anchor. The basis for modern dental implants is a biological process called osseointegration, in which materials such as titanium or zirconia form an intimate bond to the bone. The implant fixture is first placed so that it is likely to osseointegrate, then a dental prosthetic is added. A variable amount of healing time is required for osseointegration before either the dental prosthetic is attached to the implant or an abutment is placed which will hold a dental prosthetic/crown.

<span class="mw-page-title-main">Dental lamina</span>

The dental lamina is a band of epithelial tissue seen in histologic sections of a developing tooth. The dental lamina is first evidence of tooth development and begins at the sixth week in utero or three weeks after the rupture of the buccopharyngeal membrane. It is formed when cells of the oral ectoderm proliferate faster than cells of other areas. Best described as an in-growth of oral ectoderm, the dental lamina is frequently distinguished from the vestibular lamina, which develops concurrently. This dividing tissue is surrounded by and, some would argue, stimulated by ectomesenchymal growth. When it is present, the dental lamina connects the developing tooth bud to the epithelium of the oral cavity. Eventually, the dental lamina disintegrates into small clusters of epithelium and is resorbed. In situations when the clusters are not resorbed, eruption cysts are formed over the developing tooth and delay its eruption into the oral cavity. This invagination of ectodermal tissues is the progenitor to the later ameloblasts and enamel while the ectomesenchyme is responsible for the dental papilla and later odontoblasts.

<span class="mw-page-title-main">Human tooth development</span> Process by which teeth form

Tooth development or odontogenesis is the complex process by which teeth form from embryonic cells, grow, and erupt into the mouth. For human teeth to have a healthy oral environment, all parts of the tooth must develop during appropriate stages of fetal development. Primary (baby) teeth start to form between the sixth and eighth week of prenatal development, and permanent teeth begin to form in the twentieth week. If teeth do not start to develop at or near these times, they will not develop at all, resulting in hypodontia or anodontia.

Periodontology or periodontics is the specialty of dentistry that studies supporting structures of teeth, as well as diseases and conditions that affect them. The supporting tissues are known as the periodontium, which includes the gingiva (gums), alveolar bone, cementum, and the periodontal ligament. A periodontist is a dentist that specializes in the prevention, diagnosis and treatment of periodontal disease and in the placement of dental implants.

The oral mucosa is the mucous membrane lining the inside of the mouth. It comprises stratified squamous epithelium, termed "oral epithelium", and an underlying connective tissue termed lamina propria. The oral cavity has sometimes been described as a mirror that reflects the health of the individual. Changes indicative of disease are seen as alterations in the oral mucosa lining the mouth, which can reveal systemic conditions, such as diabetes or vitamin deficiency, or the local effects of chronic tobacco or alcohol use. The oral mucosa tends to heal faster and with less scar formation compared to the skin. The underlying mechanism remains unknown, but research suggests that extracellular vesicles might be involved.

<span class="mw-page-title-main">Gingival sulcus</span> Space between tooth and gums

The gingival sulcus is an area of potential space between a tooth and the surrounding gingival tissue and is lined by sulcular epithelium. The depth of the sulcus is bounded by two entities: apically by the gingival fibers of the connective tissue attachment and coronally by the free gingival margin. A healthy sulcular depth is three millimeters or less, which is readily self-cleansable with a properly used toothbrush or the supplemental use of other oral hygiene aids.

<span class="mw-page-title-main">Tooth eruption</span> Process in tooth development

Tooth eruption is a process in tooth development in which the teeth enter the mouth and become visible. It is currently believed that the periodontal ligament plays an important role in tooth eruption. The first human teeth to appear, the deciduous (primary) teeth, erupt into the mouth from around 6 months until 2 years of age, in a process known as "teething". These teeth are the only ones in the mouth until a person is about 6 years old creating the primary dentition stage. At that time, the first permanent tooth erupts and begins a time in which there is a combination of primary and permanent teeth, known as the mixed dentition stage, which lasts until the last primary tooth is lost. Then, the remaining permanent teeth erupt into the mouth during the permanent dentition stage.

This is a list of definitions of commonly used terms of location and direction in dentistry. This set of terms provides orientation within the oral cavity, much as anatomical terms of location provide orientation throughout the body.

<span class="mw-page-title-main">Gingival and periodontal pocket</span>

Gingival and periodontal pockets are dental terms indicating the presence of an abnormal depth of the gingival sulcus near the point at which the gingival tissue contacts the tooth.

The junctional epithelium (JE) is that epithelium which lies at, and in health also defines, the base of the gingival sulcus. The probing depth of the gingival sulcus is measured by a calibrated periodontal probe. In a healthy-case scenario, the probe is gently inserted, slides by the sulcular epithelium (SE), and is stopped by the epithelial attachment (EA). However, the probing depth of the gingival sulcus may be considerably different from the true histological gingival sulcus depth.

<span class="mw-page-title-main">Gingival margin</span>

The free gingival margin is the interface between the sulcular epithelium and the epithelium of the oral cavity. This interface exists at the most coronal point of the gingiva, otherwise known as the crest of the marginal gingiva.

Dental pertains to the teeth, including dentistry. Topics related to the dentistry, the human mouth and teeth include:

Epulis is any tumor like enlargement situated on the gingival or alveolar mucosa. The word literally means "(growth) on the gingiva", and describes only the location of the mass and has no further implications on the nature of the lesion. There are three types: fibromatous, ossifying and acanthomatous. The related term parulis refers to a mass of inflamed granulation tissue at the opening of a draining sinus on the alveolus over the root of an infected tooth. Another closely related term is gingival enlargement, which tends to be used where the enlargement is more generalized over the whole gingiva rather than a localized mass.

Odontogenic cyst are a group of jaw cysts that are formed from tissues involved in odontogenesis. Odontogenic cysts are closed sacs, and have a distinct membrane derived from rests of odontogenic epithelium. It may contain air, fluids, or semi-solid material. Intra-bony cysts are most common in the jaws, because the mandible and maxilla are the only bones with epithelial components. That odontogenic epithelium is critical in normal tooth development. However, epithelial rests may be the origin for the cyst lining later. Not all oral cysts are odontogenic cysts. For example, mucous cyst of the oral mucosa and nasolabial duct cyst are not of odontogenic origin.

A cyst is a pathological epithelial lined cavity that fills with fluid or soft material and usually grows from internal pressure generated by fluid being drawn into the cavity from osmosis. The bones of the jaws, the mandible and maxilla, are the bones with the highest prevalence of cysts in the human body. This is due to the abundant amount of epithelial remnants that can be left in the bones of the jaws. The enamel of teeth is formed from ectoderm, and so remnants of epithelium can be left in the bone during odontogenesis. The bones of the jaws develop from embryologic processes which fuse, and ectodermal tissue may be trapped along the lines of this fusion. This "resting" epithelium is usually dormant or undergoes atrophy, but, when stimulated, may form a cyst. The reasons why resting epithelium may proliferate and undergo cystic transformation are generally unknown, but inflammation is thought to be a major factor. The high prevalence of tooth impactions and dental infections that occur in the bones of the jaws is also significant to explain why cysts are more common at these sites.

<span class="mw-page-title-main">Human mouth</span> Part of human anatomy

In human anatomy, the mouth is the first portion of the alimentary canal that receives food and produces saliva. The oral mucosa is the mucous membrane epithelium lining the inside of the mouth.

<span class="mw-page-title-main">Gingival cyst</span> Medical condition

Gingival cyst, also known as Epstein's pearl, is a type of cysts of the jaws that originates from the dental lamina and is found in the mouth parts. It is a superficial cyst in the alveolar mucosa. It can be seen inside the mouth as small and whitish bulge. Depending on the ages in which they develop, the cysts are classified into gingival cyst of newborn and gingival cyst of adult. Structurally, the cyst is lined by thin epithelium and shows a lumen usually filled with desquamated keratin, occasionally containing inflammatory cells. The nodes are formed as a result of cystic degeneration of epithelial rests of the dental lamina.

References

  1. 1 2 3 Antonio N (13 October 2017). Ten Cate's oral histology : development, structure, and function (9th ed.). St. Louis, Missouri. ISBN   9780323485241. OCLC   990257609.{{cite book}}: CS1 maint: location missing publisher (link)
  2. Noble, Suzanne (2012). Clinical Textbook of Dental Hygiene and Therapy. John Wiley & Sons. p. 536. ISBN   9781118362631.
  3. Hovorakova M, Lesot H, Peterka M, Peterkova R (August 2018). "Early development of the human dentition revisited". Journal of Anatomy. 233 (2): 135–145. doi:10.1111/joa.12825. PMC   6036925 . PMID   29745448.
  4. Hovorakova, M., Lesot, H., Peterka, M. et al (2005) 'The developmental relationship between the deciduous dentition and the oral vestibule in human embryos', Brain Structure and Function, 209(4), pp 303–313. [Online]. Available at: https://doi.org/10.1007/s00429-004-0441-y (Accessed: 19 January 2019).
  5. Henderson., Scott, James (1977). Introduction to dental anatomy. 1979 printing. Symons, Norman Barrington Bray (8th ed.). Edinburgh: Churchill Livingstone. ISBN   978-0443016189. OCLC   3034220.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. Brand, Richard W. (3 December 2013). Anatomy of orofacial structures : a comprehensive approach. Isselhard, Donald E. (Enhanced seventh ed.). St. Louis, Missouri. ISBN   9780323227841. OCLC   862091647.{{cite book}}: CS1 maint: location missing publisher (link)
  7. Witter, Kirsti; Pavlikova, Hana; Matulova, Petra; Misek, Ivan (September 2005). "Relationship between vestibular lamina, dental lamina, and the developing oral vestibule in the upper jaw of the field vole (Microtus agrestis, Rodentia)". Journal of Morphology. 265 (3): 264–270. doi: 10.1002/jmor.10356 . ISSN   0362-2525. PMID   16025539. S2CID   46096904.
  8. 1 2 3 P Ramachandran, Deepthi (29 July 2013). "Retention of complete dentures" . Retrieved 20 January 2018.
  9. 1 2 3 Rajpal J, Gupta KK, Srivastava R, Arora A (March 2013). "Vestibular deepening by periosteal fenestration and its use as a periosteal pedicle flap for root coverage". Journal of Indian Society of Periodontology. 17 (2): 265–70. doi: 10.4103/0972-124X.113095 . PMC   3713765 . PMID   23869140.
  10. 1 2 3 4 Srinivas BV, Rupa N, Halini Kumari KV, Rajender A, Reddy MN (August 2015). "Treatment of gingival recession using free gingival graft with fibrin fibronectin sealing system: A novel approach". Journal of Pharmacy & Bioallied Sciences. 7 (Suppl 2): S734-9. doi: 10.4103/0975-7406.163524 . PMC   4606698 . PMID   26538956.
  11. 1 2 3 Wennström JL, Zucchelli G (August 1996). "Increased gingival dimensions. A significant factor for successful outcome of root coverage procedures? A 2-year prospective clinical study". Journal of Clinical Periodontology. 23 (8): 770–7. doi:10.1111/j.1600-051X.1996.tb00608.x. PMID   8877664.