Zirconium carbide

Last updated
Zirconium carbide
ZrN-polyhedral.png
Zirconium carbide ZrC.jpg
Names
Other names
Zirconium(IV) carbide
Identifiers
3D model (JSmol)
ECHA InfoCard 100.031.920 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-125-1
PubChem CID
RTECS number
  • ZH7155000
UN number 3178
  • [Zr+]#[C-]
Properties
ZrC
Molar mass 103.235 g·mol−1
AppearanceGray refractory solid
Odor Odorless
Density 6.73 g/cm3 (24 °C) [1]
Melting point 3,532–3,540 °C (6,390–6,404 °F; 3,805–3,813 K) [1] [2]
Boiling point 5,100 °C (9,210 °F; 5,370 K) [2]
Insoluble
Solubility Soluble in concentrated H2SO4, HF, [1] HNO3
Structure
Cubic, cF8 [3]
Fm3m, No. 225 [3]
a = 4.6976(4) Å [3]
α = 90°, β = 90°, γ = 90°
Octahedral [3]
Thermochemistry
37.442 J/mol·K [4]
Std molar
entropy
(S298)
33.14 J/mol·K [4]
−207 kJ/mol (extrapolated to stoichiometric composition) [5]
−196.65 kJ/mol [4]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Pyrophoric
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg [6]
Danger
H228, H302, H312, H332 [6]
P210, P280 [6]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
0
0
Related compounds
Other anions
Zirconium nitride
Zirconium oxide
Other cations
Titanium carbide
Hafnium carbide
Vanadium carbide
Niobium carbide
Tantalum carbide
Chromium carbide
Molybdenum carbide
Tungsten carbide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Zirconium carbide (Zr C) is an extremely hard refractory ceramic material, [7] commercially used in tool bits for cutting tools. It is usually processed by sintering.

Contents

Properties

Thermal expansion
coefficients of ZrC
[2]
TαV
100 °C0.141
200 °C0.326
400 °C0.711
800 °C1.509
1200 °C2.344

It appears as a gray metallic powder with cubic crystal structure. It is highly corrosion resistant. This Group IV interstitial transition-metal carbide is also a member of ultra high temperature ceramics or (UHTC). Due to the presence of metallic bonding, ZrC has a thermal conductivity of 20.5 W/m·K and an electrical conductivity (resistivity ~43 μΩ·cm), both of which are similar to that for zirconium metal. The strong covalent Zr-C bond gives this material a very high melting point (~3530 °C), high modulus (~440 GPa) and hardness (25 GPa). ZrC has a lower density (6.73 g/cm3) compared to other carbides like WC (15.8 g/cm3), TaC (14.5 g/cm3) or HfC (12.67 g/cm3). ZrC seems suitable for use in re-entry vehicles, rocket/scramjet engines or supersonic vehicles in which low densities and high temperatures load-bearing capabilities are crucial requirements.[ citation needed ]

Like most carbides of refractory metals, zirconium carbide is sub-stoichiometric, i.e., it contains carbon vacancies. At carbon contents higher than approximately ZrC0.98 the material contains free carbon. [5] ZrC is stable for a carbon-to-metal ratio ranging from 0.65 to 0.98.

The group IVA metal carbides, TiC, ZrC, and SiC are practically inert toward attack by strong aqueous acids (HCl) and strong aqueous bases (NaOH) even at 100' C, however, ZrC does react with HF.

The mixture of zirconium carbide and tantalum carbide is an important cermet material.[ citation needed ]

Uses

Hafnium-free zirconium carbide and niobium carbide can be used as refractory coatings in nuclear reactors. Because of a low neutron absorption cross-section and weak damage sensitivity under irradiation, it finds use as the coating of uranium dioxide and thorium dioxide particles of nuclear fuel. The coating is usually deposited by thermal chemical vapor deposition in a fluidized bed reactor. It also has high emissivity and high current capacity at elevated temperatures rendering it as a promising material for use in thermo-photovoltaic radiators and field emitter tips and arrays.[ citation needed ]

It is also used as an abrasive, in cladding, in cermets, incandescent filaments and cutting tools.[ citation needed ]

Production

Zirconium carbide can be fabricated in several ways. One method is carbothermic reaction of zirconia by graphite. This results in a powder. Densified ZrC can then be made by sintering the powder of ZrC at upwards of 2000 °C. Hot pressing of ZrC can bring down the sintering temperature and consequently helps in producing fine grained fully densified ZrC. Spark plasma sintering also has been used to produce fully densified ZrC. [8]

Zirconium carbide can also be fabricated by solution based processing. [9] This is achieved by refluxing a metal oxide with acetylacetone.

Another method of fabrication is chemical vapour deposition. [10] This is achieved by heating a zirconium sponge and parsing halide gas through it.

Poor oxidation resistance over 800 °C limits the applications of ZrC. One way to improve the oxidation resistance of ZrC is to make composites. Important composites proposed are ZrC-ZrB2 and ZrC-ZrB2-SiC composite. These composites can work up to 1800 °C.[ citation needed ] Another method to improve this is to use another material as a barrier layer such as in TRISO fuel particles.

Related Research Articles

<span class="mw-page-title-main">Hafnium</span> Chemical element, symbol Hf and atomic number 72

Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1922, by Dirk Coster and George de Hevesy, making it one of the last two stable elements to be discovered. Hafnium is named after Hafnia, the Latin name for Copenhagen, where it was discovered.

<span class="mw-page-title-main">Zirconium</span> Chemical element, symbol Zr and atomic number 40

Zirconium is a chemical element; it has symbol Zr and atomic number 40. The name zirconium is derived from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian zargun. It is a lustrous, grey-white, strong transition metal that closely resembles hafnium and, to a lesser extent, titanium.

<span class="mw-page-title-main">Zirconium dioxide</span> Chemical compound

Zirconium dioxide, sometimes known as zirconia, is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period and three of the sixth period. They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.

<span class="mw-page-title-main">Industrial processes</span> Process of producing goods

Industrial processes are procedures involving chemical, physical, electrical, or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.

<span class="mw-page-title-main">Refractory</span> Materials resistant to decomposition under high temperatures

In materials science, a refractory is a material that is resistant to decomposition by heat or chemical attack that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compounds that may be porous or non-porous, and their crystallinity varies widely: they may be crystalline, polycrystalline, amorphous, or composite. They are typically composed of oxides, carbides or nitrides of the following elements: silicon, aluminium, magnesium, calcium, boron, chromium and zirconium. Many refractories are ceramics, but some such as graphite are not, and some ceramics such as clay pottery are not considered refractory. Refractories are distinguished from the refractory metals, which are elemental metals and their alloys that have high melting temperatures.

<span class="mw-page-title-main">Tantalum carbide</span> Chemical compound

Tantalum carbides (TaC) form a family of binary chemical compounds of tantalum and carbon with the empirical formula TaCx, where x usually varies between 0.4 and 1. They are extremely hard, brittle, refractory ceramic materials with metallic electrical conductivity. They appear as brown-gray powders, which are usually processed by sintering.

<span class="mw-page-title-main">Hafnium diboride</span> Chemical compound

Hafnium diboride is a type of ceramic composed of hafnium and boron that belongs to the class of ultra-high temperature ceramics. It has a melting temperature of about 3250 °C. It is an unusual ceramic, having relatively high thermal and electrical conductivities, properties it shares with isostructural titanium diboride and zirconium diboride. It is a grey, metallic looking material. Hafnium diboride has a hexagonal crystal structure, a molar mass of 200.11 grams per mole, and a density of 11.2 g/cm3.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

Niobium carbide (NbC and Nb2C) is an extremely hard refractory ceramic material, commercially used in tool bits for cutting tools. It is usually processed by sintering and is a frequent additive as grain growth inhibitor in cemented carbides. It has the appearance of a brown-gray metallic powder with purple lustre. It is highly corrosion resistant.

<span class="mw-page-title-main">Hafnium carbide</span> Chemical compound

Hafnium carbide (HfC) is a chemical compound of hafnium and carbon. Previously the material was estimated to have a melting point of about 3,900 °C. More recent tests have been able to conclusively prove that the substance has an even higher melting point of 3,958 °C exceeding those of tantalum carbide and tantalum hafnium carbide which were both previously estimated to be higher. However, it has a low oxidation resistance, with the oxidation starting at temperatures as low as 430 °C. Experimental testing in 2018 confirmed the higher melting point yielding a result of 3,982 (±30°C) with a small possibility that the melting point may even exceed 4,000°C.

Tantalum hafnium carbide is a refractory chemical compound with a general formula TaxHfyCx+y, which can be considered as a solid solution of tantalum carbide and hafnium carbide. It was originally thought to have the highest melting of any known substance but new research has proven that hafnium carbonitride has a higher melting point.

<span class="mw-page-title-main">Zirconium diboride</span> Chemical compound

Zirconium diboride (ZrB2) is a highly covalent refractory ceramic material with a hexagonal crystal structure. ZrB2 is an ultra-high temperature ceramic (UHTC) with a melting point of 3246 °C. This along with its relatively low density of ~6.09 g/cm3 (measured density may be higher due to hafnium impurities) and good high temperature strength makes it a candidate for high temperature aerospace applications such as hypersonic flight or rocket propulsion systems. It is an unusual ceramic, having relatively high thermal and electrical conductivities, properties it shares with isostructural titanium diboride and hafnium diboride.

<span class="mw-page-title-main">Cemented carbide</span> Type of composite material

Cemented carbides are a class of hard materials used extensively for cutting tools, as well as in other industrial applications. It consists of fine particles of carbide cemented into a composite by a binder metal. Cemented carbides commonly use tungsten carbide (WC), titanium carbide (TiC), or tantalum carbide (TaC) as the aggregate. Mentions of "carbide" or "tungsten carbide" in industrial contexts usually refer to these cemented composites.

<span class="mw-page-title-main">Ceramic matrix composite</span> Composite material consisting of ceramic fibers in a ceramic matrix

In materials science ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix. The fibers and the matrix both can consist of any ceramic material, including carbon and carbon fibers.

Dymalloy is a metal matrix composite of 20% copper and 80% silver alloy matrix with type I diamond. It has a very high thermal conductivity of 420 W/(m·K), and its thermal expansion can be adjusted to match other materials, e.g., silicon and gallium arsenide chips. It is chiefly used in microelectronics as a substrate for high-power and high-density multi-chip modules, where it aids with removing waste heat.

Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that can withstand extremely high temperatures without degrading, often above 2,000 °C. They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking. Chemically, they are usually borides, carbides, nitrides, and oxides of early transition metals.

Ultra-high temperature ceramic matrix composites (UHTCMC) are a class of refractory ceramic matrix composites (CMCs) with melting points significantly higher than that of typical CMCs. Among other applications, they are the subject of extensive research in the aerospace engineering field for their ability to withstand extreme heat for extended periods of time, a crucial property in applications such as thermal protection systems (TPS) and rocket nozzles. Carbon fiber-reinforced carbon (C/C) maintains its structural integrity up to 2000 °C; however, C/C is mainly used as an ablative material, designed to purposefully erode under extreme temperatures in order to dissipate energy. Carbon fiber reinforced silicon carbide matrix composites (C/SiC) and Silicon carbide fiber reinforced silicon carbide matrix composites (SiC/SiC) are considered reusable materials because silicon carbide is a hard material with a low erosion and it forms a silica glass layer during oxidation which prevents further oxidation of inner material. However, above a certain temperature starts the active oxidation of silicon carbide matrix to gaseous silicon monoxide, consequently loss of protection from further oxidation, which leads the material to an uncontrolled and fast erosion. For this reason C/SiC and SiC/SiC are used in the range of temperature between 1200° - 1400 °C.

<span class="mw-page-title-main">Niobium diboride</span> Chemical compound

Niobium diboride (NbB2) is a highly covalent refractory ceramic material with a hexagonal crystal structure.

Hafnium compounds are compounds containing the element hafnium (Hf). Due to the lanthanide contraction, the ionic radius of hafnium(IV) (0.78 ångström) is almost the same as that of zirconium(IV) (0.79 angstroms). Consequently, compounds of hafnium(IV) and zirconium(IV) have very similar chemical and physical properties. Hafnium and zirconium tend to occur together in nature and the similarity of their ionic radii makes their chemical separation rather difficult. Hafnium tends to form inorganic compounds in the oxidation state of +4. Halogens react with it to form hafnium tetrahalides. At higher temperatures, hafnium reacts with oxygen, nitrogen, carbon, boron, sulfur, and silicon. Some compounds of hafnium in lower oxidation states are known.

References

  1. 1 2 3 Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN   978-1-4200-9084-0.
  2. 1 2 3 Perry, Dale L. (2011). Handbook of Inorganic Compounds (2nd ed.). CRC Press. p. 472. ISBN   978-1-4398-1461-1.
  3. 1 2 3 4 Kempter, C. P.; Fries, R. J. (1960). "Crystallographic Data. 189. Zirconium Carbide". Analytical Chemistry. 32 (4): 570. doi:10.1021/ac60160a042.
  4. 1 2 3 Zirconium carbide in Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD) (retrieved 2014-06-30)
  5. 1 2 Baker, F. B.; Storms, E. K.; Holley, C. E. (1969). "Enthalpy of formation of zirconium carbide". Journal of Chemical & Engineering Data. 14 (2): 244. doi:10.1021/je60041a034.
  6. 1 2 3 Sigma-Aldrich Co., Zirconium(IV) carbide. Retrieved on 2014-06-30.
  7. Measurement and theory of the hardness of transition- metal carbides , especially tantalum carbide. Schwab, G. M.; Krebs, A. Phys.-Chem. Inst., Univ. Muenchen, Munich, Fed. Rep. Ger. Planseeberichte fuer Pulvermetallurgie (1971), 19(2), 91-110
  8. Wei, Xialu; Back, Christina; Izhvanov, Oleg; Haines, Christopher; Olevsky, Eugene (2016). "Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties". Materials. 9 (7): 577. Bibcode:2016Mate....9..577W. doi: 10.3390/ma9070577 . PMC   5456903 . PMID   28773697.
  9. Sacks, Michael D.; Wang, Chang-An; Yang, Zhaohui; Jain, Anubhav (2004). "Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors". Journal of Materials Science. 39 (19): 6057–6066. Bibcode:2004JMatS..39.6057S. doi:10.1023/B:JMSC.0000041702.76858.a7. S2CID   94979802.
  10. Yiguang Wang; Qiaomu Liu; Jinling Liu; Litong Zhang; Laifei Cheng (January 2008). "Deposition Mechanism for Chemical Vapor Deposition of Zirconium Carbide Coatings". Journal of the American Ceramic Society. 91 (4): 1249–1252. doi:10.1111/j.1551-2916.2007.02253.x . Retrieved 2021-12-27.