Zonal wavenumber

Last updated
500mb geopotential height averaged between October 9-21, 2010 illustrating Rossby wave pattern with the zonal wavenumber 4. DOE AMIP reanalysis data. 500mb geopotential height wavenumber 4 Rossby wave (planetary waves) pattern. October 9-21, 2010 daily average.jpg
500mb geopotential height averaged between October 9–21, 2010 illustrating Rossby wave pattern with the zonal wavenumber 4. DOE AMIP reanalysis data.

In meteorological applications, a zonal wavenumber or hemispheric wavenumber is the dimensionless number of wavelengths fitting within a full circle around the globe at a given latitude. [1]

where λ is the wavelength, r is the Earth's radius, and is the latitude.

Zonal wavenumbers are typically counted on the upper level (say 500-millibar) geopotential maps by identifying troughs and ridges of the waves. Wavenumber 1 has one trough and one ridge, i.e. one wavelength fits degrees. Wavenumber 2 has two ridges and two troughs around 360 degrees.

Wavenumber 0 corresponds to zonal (symmetric) flow. Wavenumbers 1–3 are called long waves and often synonymous in meteorological literature with the mid-latitude planetary Rossby waves, while wavenumbers 4-10 are often referred to as "synoptic" waves. [2] In the Northern Hemisphere, wavenumbers 1 and 2 are important for the time-mean circulation due to topography (Tibetan Plateau and Rocky Mountains), [3] [4] whereas in the Southern Hemisphere, tropical convection is responsible for the presence of mainly zonal wavenumber 3. [5]


See also

Related Research Articles

<span class="mw-page-title-main">Wave interference</span> Phenomenon resulting from the superposition of two waves

In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater intensity or lower amplitude if the two waves are in phase or out of phase, respectively. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves as well as in loudspeakers as electrical waves.

<span class="mw-page-title-main">Phase (waves)</span> The elapsed fraction of a cycle of a periodic function

In physics and mathematics, the phase of a wave or other periodic function of some real variable is an angle-like quantity representing the fraction of the cycle covered up to . It is expressed in such a scale that it varies by one full turn as the variable goes through each period. It may be measured in any angular unit such as degrees or radians, thus increasing by 360° or as the variable completes a full period.

<span class="mw-page-title-main">Wavelength</span> Distance over which a waves shape repeats

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

<span class="mw-page-title-main">Dispersion (optics)</span> Dependence of phase velocity on frequency

In optics and in wave propagation in general, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; sometimes the term chromatic dispersion is used for specificity to optics in particular. A medium having this common property may be termed a dispersive medium.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

<span class="mw-page-title-main">Sine wave</span> Mathematical curve that describes a smooth repetitive oscillation; continuous wave

A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the sine trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in mathematics, as well as in physics, engineering, signal processing and many other fields.

Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby. They are observed in the atmospheres and oceans of Earth and other planets, owing to the rotation of Earth or of the planet involved. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream. Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

<span class="mw-page-title-main">Orthographic map projection</span> Azimuthal perspective map projection

Orthographic projection in cartography has been used since antiquity. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective projection in which the sphere is projected onto a tangent plane or secant plane. The point of perspective for the orthographic projection is at infinite distance. It depicts a hemisphere of the globe as it appears from outer space, where the horizon is a great circle. The shapes and areas are distorted, particularly near the edges.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">Mollweide projection</span> Pseudocylindrical equal-area map projection

The Mollweide projection is an equal-area, pseudocylindrical map projection generally used for maps of the world or celestial sphere. It is also known as the Babinet projection, homalographic projection, homolographic projection, and elliptical projection. The projection trades accuracy of angle and shape for accuracy of proportions in area, and as such is used where that property is needed, such as maps depicting global distributions.

<span class="mw-page-title-main">Scale (map)</span> Ratio of distance on a map to the corresponding distance on the ground

The scale of a map is the ratio of a distance on the map to the corresponding distance on the ground. This simple concept is complicated by the curvature of the Earth's surface, which forces scale to vary across a map. Because of this variation, the concept of scale becomes meaningful in two distinct ways.

<span class="mw-page-title-main">Bottomley projection</span> Pseudoconical equal-area map projection

The Bottomley map projection is a pseudoconical equal area map projection defined as:

Atmospheric tides are global-scale periodic oscillations of the atmosphere. In many ways they are analogous to ocean tides. Atmospheric tides can be excited by:

<span class="mw-page-title-main">Wagner VI projection</span> Pseudocylindrical compromise map projection

Wagner VI is a pseudocylindrical whole Earth map projection. Like the Robinson projection, it is a compromise projection, not having any special attributes other than a pleasing, low distortion appearance. Wagner VI is equivalent to the Kavrayskiy VII horizontally elongated by a factor of . This elongation results in proper preservation of shapes near the equator but slightly more distortion overall. The aspect ratio of this projection is 2:1, as formed by the ratio of the equator to the central meridian. This matches the ratio of Earth’s equator to any meridian.

Equatorial Rossby waves, often called planetary waves, are very long, low frequency water waves found near the equator and are derived using the equatorial beta plane approximation.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

<span class="mw-page-title-main">Nicolosi globular projection</span>

The Nicolosi globular projection is a polyconic map projection invented about the year 1,000 by the Iranian polymath al-Biruni. As a circular representation of a hemisphere, it is called globular because it evokes a globe. It can only display one hemisphere at a time and so normally appears as a "double hemispheric" presentation in world maps. The projection came into use in the Western world starting in 1660, reaching its most common use in the 19th century. As a "compromise" projection, it preserves no particular properties, instead giving a balance of distortions.

<span class="mw-page-title-main">Strebe 1995 projection</span> Pseudoazimuthal equal-area map projection

The Strebe 1995 projection, Strebe projection, Strebe lenticular equal-area projection, or Strebe equal-area polyconic projection is an equal-area map projection presented by Daniel "daan" Strebe in 1994. Strebe designed the projection to keep all areas proportionally correct in size; to push as much of the inevitable distortion as feasible away from the continental masses and into the Pacific Ocean; to keep a familiar equatorial orientation; and to do all this without slicing up the map.

In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency.

References

  1. "AMS Glossary". Glossary.ametsoc.org. 2015-07-28. Retrieved 2016-12-01.
  2. Vallis, Geoffrey K (2006). Atmospheric and Oceanic Fluid Dynamics - Fundamentals and Large-scale Circulation. Cambridge, UK: Cambridge University Press. ISBN   9780521849692.
  3. Held, I; Ting, M; Wang, H (2002). "Northern winter stationary waves: Theory and modeling". Journal of Climate. 15 (16): 2125–2144. doi: 10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2 .
  4. Garfinkel, C; White, I; Gerber, E; Jucker, M; Erez, M (2020). "The building blocks of Northern Hemisphere wintertime stationary waves". Journal of Climate. 33 (13): 5611–5633. doi: 10.1175/JCLI-D-19-0181.1 . S2CID   214141950.
  5. Goyal, Rishav; Jucker, Martin; Sen Gupta, Alex; Hendon, Harry; England, Matthew (2021). "Zonal wave 3 pattern in the Southern Hemisphere generated by tropical convection". Nature Geoscience. 14 (10): 732–738. doi:10.1038/s41561-021-00811-3. S2CID   237310074.