Affine group

Last updated

In mathematics, the affine group or general affine group of any affine space is the group of all invertible affine transformations from the space into itself. In the case of a Euclidean space (where the associated field of scalars is the real numbers), the affine group consists of those functions from the space to itself such that the image of every line is a line.

Contents

Over any field, the affine group may be viewed as a matrix group in a natural way. If the associated field of scalars is the real or complex field, then the affine group is a Lie group.

Relation to general linear group

Construction from general linear group

Concretely, given a vector space V, it has an underlying affine space A obtained by "forgetting" the origin, with V acting by translations, and the affine group of A can be described concretely as the semidirect product of V by GL(V), the general linear group of V:

The action of GL(V) on V is the natural one (linear transformations are automorphisms), so this defines a semidirect product.

In terms of matrices, one writes:

where here the natural action of GL(n, K) on Kn is matrix multiplication of a vector.

Stabilizer of a point

Given the affine group of an affine space A, the stabilizer of a point p is isomorphic to the general linear group of the same dimension (so the stabilizer of a point in Aff(2, R) is isomorphic to GL(2, R)); formally, it is the general linear group of the vector space (A, p): recall that if one fixes a point, an affine space becomes a vector space.

All these subgroups are conjugate, where conjugation is given by translation from p to q (which is uniquely defined), however, no particular subgroup is a natural choice, since no point is special – this corresponds to the multiple choices of transverse subgroup, or splitting of the short exact sequence

In the case that the affine group was constructed by starting with a vector space, the subgroup that stabilizes the origin (of the vector space) is the original GL(V).

Matrix representation

Representing the affine group as a semidirect product of V by GL(V), then by construction of the semidirect product, the elements are pairs (v, M), where v is a vector in V and M is a linear transform in GL(V), and multiplication is given by

This can be represented as the (n + 1) × (n + 1) block matrix

where M is an n × n matrix over K, v an n × 1 column vector, 0 is a 1 × n row of zeros, and 1 is the 1 × 1 identity block matrix.

Formally, Aff(V) is naturally isomorphic to a subgroup of GL(VK), with V embedded as the affine plane {(v, 1) | vV}, namely the stabilizer of this affine plane; the above matrix formulation is the (transpose of) the realization of this, with the n × n and 1 × 1) blocks corresponding to the direct sum decomposition VK.

A similar representation is any (n + 1) × (n + 1) matrix in which the entries in each column sum to 1. [1] The similarity P for passing from the above kind to this kind is the (n + 1) × (n + 1) identity matrix with the bottom row replaced by a row of all ones.

Each of these two classes of matrices is closed under matrix multiplication.

The simplest paradigm may well be the case n = 1, that is, the upper triangular 2 × 2 matrices representing the affine group in one dimension. It is a two-parameter non-Abelian Lie group, so with merely two generators (Lie algebra elements), A and B, such that [A, B] = B, where

so that

Character table of Aff(Fp)

Aff(Fp) has order p(p − 1). Since

we know Aff(Fp) has p conjugacy classes, namely

Then we know that Aff(Fp) has p irreducible representations. By above paragraph (§ Matrix representation), there exist p − 1 one-dimensional representations, decided by the homomorphism

for k = 1, 2,… p − 1, where

and i2 = −1, a = gj, g is a generator of the group F
p
. Then compare with the order of Fp, we have

hence χp = p − 1 is the dimension of the last irreducible representation. Finally using the orthogonality of irreducible representations, we can complete the character table of Aff(Fp):

Planar affine group over the reals

The elements of can take a simple form on a well-chosen affine coordinate system. More precisely, given an affine transformation of an affine plane over the reals, an affine coordinate system exists on which it has one of the following forms, where a, b, and t are real numbers (the given conditions insure that transformations are invertible, but not for making the classes distinct; for example, the identity belongs to all the classes).

Case 1 corresponds to translations.

Case 2 corresponds to scalings that may differ in two different directions. When working with a Euclidean plane these directions need not be perpendicular, since the coordinate axes need not be perpendicular.

Case 3 corresponds to a scaling in one direction and a translation in another one.

Case 4 corresponds to a shear mapping combined with a dilation.

Case 5 corresponds to a shear mapping combined with a dilation.

Case 6 corresponds to similarities when the coordinate axes are perpendicular.

The affine transformations without any fixed point belong to cases 1, 3, and 5. The transformations that do not preserve the orientation of the plane belong to cases 2 (with ab < 0) or 3 (with a < 0).

The proof may be done by first remarking that if an affine transformation has no fixed point, then the matrix of the associated linear map has an eigenvalue equal to one, and then using the Jordan normal form theorem for real matrices.

Other affine groups and subgroups

General case

Given any subgroup G < GL(V) of the general linear group, one can produce an affine group, sometimes denoted Aff(G), analogously as Aff(G) := VG.

More generally and abstractly, given any group G and a representation of G on a vector space V, one gets [note 1] an associated affine group VρG: one can say that the affine group obtained is "a group extension by a vector representation", and, as above, one has the short exact sequence

Special affine group

The subset of all invertible affine transformations that preserve a fixed volume form up to sign is called the special affine group. (The transformations themselves are sometimes called equiaffinities.) This group is the affine analogue of the special linear group. In terms of the semi-direct product, the special affine group consists of all pairs (M, v) with , that is, the affine transformations

where M is a linear transformation of whose determinant has absolute value 1 and v is any fixed translation vector. [2] [3]

The subgroup of the special affine group consisting of those transformations whose linear part has determinant 1 is the group of orientation- and volume-preserving maps. Algebraically, this group is a semidirect product of the special linear group of with the translations. It is generated by the shear mappings.

Projective subgroup

Presuming knowledge of projectivity and the projective group of projective geometry, the affine group can be easily specified. For example, Günter Ewald wrote: [4]

The set of all projective collineations of Pn is a group which we may call the projective group of Pn. If we proceed from Pn to the affine space An by declaring a hyperplane ω to be a hyperplane at infinity, we obtain the affine group of An as the subgroup of consisting of all elements of that leave ω fixed.

Isometries of Euclidean space

When the affine space A is a Euclidean space (over the field of real numbers), the group of distance-preserving maps ( isometries ) of A is a subgroup of the affine group. Algebraically, this group is a semidirect product of the orthogonal group of with the translations. Geometrically, it is the subgroup of the affine group generated by the orthogonal reflections.

Poincaré group

The Poincaré group is the affine group of the Lorentz group O(1,3):

This example is very important in relativity.

See also

Notes

  1. Since GL(V) < Aut(V). Note that this containment is in general proper, since by "automorphisms" one means group automorphisms, i.e., they preserve the group structure on V (the addition and origin), but not necessarily scalar multiplication, and these groups differ if working over R.

Related Research Articles

In mathematics, the determinant is a scalar value that is a certain function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism. The determinant of a product of matrices is the product of their determinants.

<span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

<span class="mw-page-title-main">Lie group</span> Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

<span class="mw-page-title-main">Affine transformation</span> Geometric transformation that preserves lines but not angles nor the origin

In Euclidean geometry, an affine transformation or affinity is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

<span class="mw-page-title-main">Quaternion group</span> Non-abelian group of order eight

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Symplectic group</span> Mathematical group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

<span class="mw-page-title-main">Unitary group</span> Group of unitary matrices

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2.

<span class="mw-page-title-main">Modular group</span> Orientation-preserving mapping class group of the torus

In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic.

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

<span class="mw-page-title-main">Affine connection</span> Construct allowing differentiation of tangent vector fields of manifolds

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

<span class="mw-page-title-main">Torsion tensor</span> Manner of characterizing a twist or screw of a moving frame around a curve

In differential geometry, the torsion tensor is a tensor that is associated to any affine connection. The torsion tensor is bilinear map of two input vectors , that produces an output vector representing the displacement within a tangent space when the tangent space is developed along an infinitesimal parallelogram whose sides are . It is skew symmetric in its inputs, because developing over the parallelogram in the opposite sense produces the opposite displacement, similarly to how a screw moves in opposite ways when it is twisted in two directions.

<span class="mw-page-title-main">Classical group</span>

In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

<span class="mw-page-title-main">Exponential map (Lie theory)</span>

In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.

References

  1. Poole, David G. (November 1995). "The Stochastic Group". American Mathematical Monthly . 102 (9): 798–801.
  2. Berger, M. (1987). Geometry. Vol. 1. Berlin Heidelberg: Springer-Verlag. Section 2.7.6. ISBN   9780534000349.
  3. Ewald, Günter (1971). Geometry: An Introduction. Belmont: Wadsworth. Section 4.12. ISBN   9780534000349.
  4. Ewald, Günter (1971). Geometry: An Introduction. Belmont: Wadsworth. p. 241. ISBN   9780534000349.