Biosolids

Last updated
Pumpkin seedlings planted out on windrows of composted biosolids Biosolid.pumpkin.row.jpg
Pumpkin seedlings planted out on windrows of composted biosolids

Biosolids are solid organic matter recovered from a sewage treatment process and used as fertilizer. [1] In the past, it was common for farmers to use animal manure to improve their soil fertility. In the 1920s, the farming community began also to use sewage sludge from local wastewater treatment plants. Scientific research over many years has confirmed that these biosolids contain similar nutrients to those in animal manures. Biosolids that are used as fertilizer in farming are usually treated to help to prevent disease-causing pathogens from spreading to the public. [2] Some sewage sludge can not qualify as biosolids due to persistent, bioaccumulative and toxic chemicals, radionuclides, and heavy metals at levels sufficient to contaminate soil and water when applied to land.

Contents

Terminology

Biosolids may be defined as organic wastewater solids that can be reused after suitable sewage sludge treatment processes leading to sludge stabilization, such as anaerobic digestion and composting. [3]

Alternatively, the definition of biosolids may be restricted by local regulations to wastewater solids only after those solids have completed a specified treatment sequence and have concentrations of pathogens and toxic chemicals below specified levels. [4]

The United States Environmental Protection Agency (EPA) defines the two terms – sewage sludge and biosolids – in the Code of Federal Regulations (CFR), Title 40, Part 503 as follows: Sewage sludge refers to the solids separated during the treatment of municipal wastewater (including domestic septage). In contrast, biosolids refers to treated sewage sludge that meets the EPA pollutant and pathogen requirements for land application and surface disposal. [4] A similar definition has been used internationally, for example, in Australia. [5]

Use of the term "biosolids" may officially be subject to government regulations. However, informal use describes a broad range of semi-solid organic products from sewage or sewage sludge. This could include any solids, slime solids or liquid slurry residue generated during the treatment of domestic wastewater including, scum and solids removed during primary, secondary or advanced treatment processes. [6] Materials that do not conform to the regulatory definition of "biosolids" can be given alternative terms like "wastewater solids.

Characteristic

Quantities

Testing for human pathogens in cereal crops after the application of biosolids CSIRO ScienceImage 4522 Testing for pathogens in agricultural soil containing biosolids.jpg
Testing for human pathogens in cereal crops after the application of biosolids

Approximately 7.1 million dry tons of biosolids were generated in 2004 at approximately 16,500 municipal wastewater treatment facilities in the United States. [7]

In the United States, as of 2013 about 55% of sewage solids are used as fertilizer. [8] Challenges faced when increasing the use of biosolids include the capital needed to build anaerobic digesters and the complexity of complying with health regulations. There are also new concerns about micro-pollutions in sewage (e.g. environmental persistent pharmaceutical pollutants), which make the process of producing high quality biosolids complex. [9] Some municipalities, states or countries have banned the use of biosolids on farmland. [9]

Nutrients

Encouraging agricultural use of biosolids is intended to prevent filling landfills with nutrient-rich organic materials from the treatment of domestic sewage that might be recycled and applied as fertilizer to improve and maintain productive soils and stimulate plant growth. [7] Biosolids can be an ideal agricultural conditioner and fertilizer [10] which can help promote crop growth to feed the increasing population. Biosolids may contain macronutrients nitrogen, phosphorus, potassium and sulphur with micronutrients copper, zinc, calcium, magnesium, iron, boron, molybdenum and manganese. [5]

Industrial and man-made contaminants

Biosolids contains synthetic organic compounds, radionuclides and heavy metals. [5] [11] [12] The United States Environmental Protection Agency (EPA) has set numeric limits for arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc but has not regulated dioxin levels. [7] [13]

Contaminants from pharmaceuticals and personal care products and some steroids and hormones may also be present in biosolids. [14] Substantial levels of persistent, bioaccumulative and toxic (PBT) polybrominated diphenyl ethers were detected in biosolids in 2001. [15]

The United States Geological Survey analyzed in 2014 nine different consumer products containing biosolids as a main ingredient for 87 organic chemicals found in cleaners, personal care products, pharmaceuticals, and other products. These analysis detected 55 of the 87 organic chemicals measured in at least one of the nine biosolid samples, with as many as 45 chemicals found in a single sample. [16]

In 2014, the City of Charlotte, North Carolina, discovered extreme levels of polychlorinated biphenyls (PCBs) in their biosolids after being alerted by that illegal PCB dumping was taking place at regional waste water treatment plants across the state. [17]

Biosolids land application in South Carolina was halted in 2013 after an emergency regulation was enacted by the South Carolina Department of Health and Environmental Control (SCDHEC) that outlawed any PCB contaminated biosolids from being land applied regardless if Class A or Class B. [18] Very soon thereafter, SCDHEC expanded PCB fish consumption advisories for nearly every waterway bordering biosolids land application fields. [19]

In 2019, the state of Maine found that 95% of sewage sludge produced in the state contained unsafe levels of Per- and polyfluoroalkyl substances (PFAS) chemicals. Several farms that had spread biosolids as fertilizer were found to have PFAS contaminated soil, groundwater, animals and crops. Hundreds of other farms were potentially similarly contaminated. The state subsequently imposed additional rules restricting biosolids spreading. [20] In 2023, Arturo A. Keller at the Bren School of Environmental Science & Management within the University of California, Santa Barbara began working on solutions to eliminate these PFAS, including creating bio-char fertilizers from the bio-solids. [21]

Biosolids used as a fertilizer have resulted in PFAS contamination of beef raised in Michigan. [22]

In October 2021 EPA announced the PFAS Strategic Roadmap which includes risk assessment for PFAS (PFOA and PFOS) in biosolids. [23] [24]

Pathogens

In the United States the EPA mandates certain treatment processes designed to significantly decrease levels of certain so-called indicator organisms, in biosolids. [7] These include, "...operational standards for fecal coliforms, Salmonella sp. bacteria, enteric viruses, and viable helminth ova." [25]

However, the US-based Water Environment Research Foundation has shown that some pathogens do survive sewage sludge treatment. [26]

EPA regulations allow only biosolids with no detectable pathogens to be widely applied; those with remaining pathogens are restricted in use. [27]

Different types of biosolids

  1. Anaerobic Digestion: Micro-organisms decompose the sludge in the absence of oxygen either at mesophilic (at 35 °C) or thermophilic (between 50° and 57 °C) temperatures.
  2. Aerobic Digestion: Micro-organisms decompose the sludge in the presence of oxygen either at ambient and mesophilic (10 °C to 40 °C) or auto-thermal (40 °C to 80 °C) temperatures.
  3. Composting: A biological process where organic matter decomposes to produce humus after the addition of some dry bulking material such as sawdust, wood chips, or shredded yard waste under controlled aerobic conditions.
  4. Alkaline Treatment: The sludge is mixed with alkaline materials such as lime or cement kiln dust, or incinerator fly ash and maintained at pH above 12 for 24 hours (for Class B) or at temperature 70 °C for 30 minutes (for Class A).
  5. Heat Drying: Either convention or conduction dryers are used to dry the biosolids
  6. Dewatering: The separation of the water from biosolids is done to obtain a semi-solid or solid product by using a dewatering technologies (centrifuges, belt filter presses, plate and frame filter presses, and drying beds and lagoons). [28]

Different General & Land Applications of Biosolids

In a publication by the Government of Canada and the Ontario Federation of Agriculture, the author mentions that using the Land Application method of Biosolids is more cost-effective to taxpayers as compared to the alternative methods of management such as disposal in a landfill. [38]

Classification systems

United States

In the United States Code of Federal Regulations (CFR), Title 40, Part 503 governs the management of biosolids. Within that federal regulation biosolids are generally classified differently depending upon the quantity of pollutants they contain and the level of treatment they have been subjected to (the latter of which determines both the level of vector attraction reduction and the level of pathogen reduction). These factors also affect how they may be disseminated (bulk or bagged) and the level of monitoring oversight which, in turn determines where and in what quantity they may be applied. [39] The National Organic Program prohibits the use of biosolids in farming certified organic crops. [40]

European Union

The European Union (EU) was the first to issue regulations for biosolids land application; this aimed to put a limit to the pathogen and pollution risk. [41] These risks come from the fact that some metabolites remain intact after waste water treatment processes. [42] Debates over biosolid use vary in severity across the EU. [41] [43]

New Zealand

In 2003, the Ministry for the Environment and the New Zealand Water & Wastes Association produced the document Guidelines for the safe application of biosolids to land in New Zealand. In the document, biosolids were defined as "sewage sludges or sewage sludges mixed with other materials that have been treated and/or stabilised to the extent that they are able to be safely and beneficially applied to land... [and noted that they] have significant fertilising and soil conditioning properties as a result of the nutrients and organic materials they contain." [44]

A New Zealand scientist, Jacqui Horswell later led collaborative research by the Institute of Environmental Science and Research, Scion, Landcare Research and the Cawthron Institute into the management of waste, in particular biosolids, and this has informed the development of frameworks for engaging local communities in the process. In 2016 the project developed a Community Engagement Framework for Biowastes to provide guidelines in effective consultation with communities about the discharge of biowastes to land, [45] and in 2017 another collaborative three-year project with councils aimed to develop a collective biosolids strategy and use the programme in the lower North Island. [46] When the project was reviewed in 2020, the conclusion was that it had shown biosolids can be beneficially reused. [47]

A research paper in 2019, reported on the management considerations around using biosolids as a fertilizer, specifically to account for the complexity of the nutrients reducing the availability for plant uptake, and noted that stakeholders need to "factor in the expected plant availability of the nutrients when assessing the risk and benefits of these biological materials." [48]

History

As public concern arose about the disposal of increased volumes of solids in the United States being removed from sewage during sewage treatment mandated by the Clean Water Act. The Water Environment Federation (WEF) sought a new name to distinguish the clean, agriculturally viable product generated by modern wastewater treatment from earlier forms of sewage sludge widely remembered for causing offensive or dangerous conditions. Of 300 suggestions, biosolids was attributed to Dr. Bruce Logan of the University of Arizona, and recognized by WEF in 1991. [49]

Examples

See also

Related Research Articles

<span class="mw-page-title-main">Compost</span> Mixture used to improve soil fertility

Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by decomposing plant and food waste, recycling organic materials, and manure. The resulting mixture is rich in plant nutrients and beneficial organisms, such as bacteria, protozoa, nematodes, and fungi. Compost improves soil fertility in gardens, landscaping, horticulture, urban agriculture, and organic farming, reducing dependency on commercial chemical fertilizers. The benefits of compost include providing nutrients to crops as fertilizer, acting as a soil conditioner, increasing the humus or humic acid contents of the soil, and introducing beneficial microbes that help to suppress pathogens in the soil and reduce soil-borne diseases.

<span class="mw-page-title-main">Sewage sludge</span> Semi-solid material that is produced as a by-product during sewage treatment

Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term "septage" also refers to sludge from simple wastewater treatment but is connected to simple on-site sanitation systems, such as septic tanks.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Wastewater treatment</span> Converting wastewater into an effluent for return to the water cycle

Wastewater treatment is a process which removes and eliminates contaminants from wastewater and converts this into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environment or is reused for various purposes. The treatment process takes place in a wastewater treatment plant. There are several kinds of wastewater which are treated at the appropriate type of wastewater treatment plant. For domestic wastewater, the treatment plant is called a Sewage Treatment. For industrial wastewater, treatment either takes place in a separate Industrial wastewater treatment, or in a sewage treatment plant. Further types of wastewater treatment plants include Agricultural wastewater treatment and leachate treatment plants.

<span class="mw-page-title-main">Clean Water Act</span> 1972 U.S. federal law regulating water pollution

The Clean Water Act (CWA) is the primary federal law in the United States governing water pollution. Its objective is to restore and maintain the chemical, physical, and biological integrity of the nation's waters; recognizing the responsibilities of the states in addressing pollution and providing assistance to states to do so, including funding for publicly owned treatment works for the improvement of wastewater treatment; and maintaining the integrity of wetlands.

<span class="mw-page-title-main">Composting toilet</span> Type of toilet that treats human excreta by a biological process called composting

A composting toilet is a type of dry toilet that treats human waste by a biological process called composting. This process leads to the decomposition of organic matter and turns human waste into compost-like material. Composting is carried out by microorganisms under controlled aerobic conditions. Most composting toilets use no water for flushing and are therefore called "dry toilets".

<span class="mw-page-title-main">Agricultural wastewater treatment</span> Farm management for controlling pollution from confined animal operations and surface runoff

Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

Onsite sewage facilities (OSSF), also called septic systems, are wastewater systems designed to treat and dispose of effluent on the same property that produces the wastewater, in areas not served by public sewage infrastructure.

<span class="mw-page-title-main">Milorganite</span> Brand of biosolids fertilizer produced by treating sewage sludge

Milorganite is a brand of biosolids fertilizer produced by treating sewage sludge by the Milwaukee Metropolitan Sewerage District. The term is a portmanteau of the term Milwaukee Organic Nitrogen. The sewer system of the District collects municipal wastewater from the Milwaukee metropolitan area. After settling, wastewater is treated with microbes to break down organic matter at the Jones Island Water Reclamation Facility in Milwaukee, Wisconsin. The byproduct sewage sludge is produced. This is heat-dried with hot air in the range of 900–1,200 °F (482–649 °C), which heats the sewage sludge to at least 176 °F (80 °C) to kill pathogens. The material is then pelletized and marketed throughout the United States under the name Milorganite. The result is recycling of the nitrogen and phosphorus from the waste-stream as fertilizer. The treated wastewater is discharged to Lake Michigan.

<span class="mw-page-title-main">Nonpoint source pollution</span> Pollution resulting from multiple sources

Nonpoint source (NPS) pollution refers to diffuse contamination of water or air that does not originate from a single discrete source. This type of pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. It is in contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification where tracing pollution back to a single source is difficult. Nonpoint source water pollution affects a water body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne debris blowing out to sea. Nonpoint source air pollution affects air quality, from sources such as smokestacks or car tailpipes. Although these pollutants have originated from a point source, the long-range transport ability and multiple sources of the pollutant make it a nonpoint source of pollution; if the discharges were to occur to a body of water or into the atmosphere at a single location, the pollution would be single-point.

<span class="mw-page-title-main">Secondary treatment</span> Biological treatment process for wastewater or sewage

Secondary treatment is the removal of biodegradable organic matter from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the intended disposal or reuse option. A "primary treatment" step often precedes secondary treatment, whereby physical phase separation is used to remove settleable solids. During secondary treatment, biological processes are used to remove dissolved and suspended organic matter measured as biochemical oxygen demand (BOD). These processes are performed by microorganisms in a managed aerobic or anaerobic process depending on the treatment technology. Bacteria and protozoa consume biodegradable soluble organic contaminants while reproducing to form cells of biological solids. Secondary treatment is widely used in sewage treatment and is also applicable to many agricultural and industrial wastewaters.

<span class="mw-page-title-main">Sewage sludge treatment</span> Processes to manage and dispose of sludge during sewage treatment

Sewage sludge treatment describes the processes used to manage and dispose of sewage sludge produced during sewage treatment. Sludge treatment is focused on reducing sludge weight and volume to reduce transportation and disposal costs, and on reducing potential health risks of disposal options. Water removal is the primary means of weight and volume reduction, while pathogen destruction is frequently accomplished through heating during thermophilic digestion, composting, or incineration. The choice of a sludge treatment method depends on the volume of sludge generated, and comparison of treatment costs required for available disposal options. Air-drying and composting may be attractive to rural communities, while limited land availability may make aerobic digestion and mechanical dewatering preferable for cities, and economies of scale may encourage energy recovery alternatives in metropolitan areas.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

<span class="mw-page-title-main">Thermal hydrolysis</span>

Thermal hydrolysis is a process used for treating industrial waste, municipal solid waste and sewage sludge.

<span class="mw-page-title-main">Reuse of human excreta</span> Safe, beneficial use of human excreta mainly in agriculture (after treatment)

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

The Thomas P. Smith Water Reclamation Facility (TPSWRF) is owned and operated by the city of Tallahassee, Florida. The facility provides sewage treatment services for Tallahassee, Florida and the surrounding areas.

<span class="mw-page-title-main">Jacqui Horswell</span> Environmental microbiologist

Jacqueline Horswell is an English-born New Zealand environmental microbiologist who specialises in research into the waste society produces, its effect on the environment, and how it can be managed. Her work focuses particularly on measuring the effect of microbial and chemical contaminants in sewage sludge and the safe reuse of biosolids as fertilizer by the planting of native trees to filter and inactivate pollutants from the sludge and the use of vermiculture. Horswell is involved in consultation with communities in New Zealand and has contributed to official guidelines for the management of biosolids. Her research has also provided information about soil microbial communities for forensic science using microbial cultures and DNA sequencing. Since 2018, Horswell has been a lecturer at Massey University.

Sustainable energy management in the wastewater sector applies the concept of sustainable management to the energy involved in the treatment of wastewater. The energy used by the wastewater sector is usually the largest portion of energy consumed by the urban water and wastewater utilities. The rising costs of electricity, the contribution to greenhouse gas emissions of the energy sector and the growing need to mitigate global warming, are driving wastewater utilities to rethink their energy management, adopting more energy efficient technologies and processes and investing in on-site renewable energy generation.

References

  1. "Definition of BIOSOLID". www.merriam-webster.com. Retrieved 2020-05-01.
  2. "Beneficial Reuse of Municipal Biosolids in Agriculture | UGA Cooperative Extension". extension.uga.edu. Retrieved 2020-05-01.
  3. Wastewater engineering: treatment and reuse (4th ed.). Metcalf & Eddy, Inc., McGraw Hill, USA. 2003. p. 1449. ISBN   0-07-112250-8.
  4. 1 2 "Sewage Sludge/Biosolids Program". United States Environmental Protection Agency. 29 January 2013. Retrieved 24 April 2015.
  5. 1 2 3 "What are biosolids?". Australian Water Association. Archived from the original on 23 April 2015. Retrieved 24 April 2015.
  6. Turovskiy, Izrail S. "Biosolids or Sludge? The Semantics of Terminology". Water and Wastes Digest. Retrieved 24 April 2015.
  7. 1 2 3 4 "Questions and Answers on Land Application of Biosolids" (PDF). Water Environment Federation. Archived from the original (PDF) on 4 April 2015. Retrieved 24 April 2015.
  8. Cities Turn Sewage Into 'Black Gold' For Local Farms (2013)
  9. 1 2 Smith, S. R. (2009). Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367(1904), 4005-4041
  10. Frank, R. (1998). The use of biosolids from wastewater treatment plants in agriculture. Environmental Management and Health, 9(4), 165-169.
  11. "Targeted National Sewage Sludge Survey Report". Biosolids. EPA. 2009.
  12. "ISCORS Assessment of Radioactivity in Sewage Sludge: Recommendations on Management of Radioactive Materials in Sewage Sludge and Ash at Publicly Owned Treatment Works" (PDF). United States Environmental Protection Agency (EPA). Interagency Steering Committee on Radiation Standards. April 2004.
  13. "Final Action Not to Regulate Dioxins in Land-Applied Sewage Sludge". water.epa.gov. 23 April 2014. Retrieved 2015-05-18.
  14. "CWA Analytical Methods: Contaminants of Emerging Concern". epa.gov. 2 September 2015. Retrieved 2017-02-25.
  15. Hale RC, La Guardia MJ, Harvey EP, Gaylor MO, Mainor TM, Duff WH (2001). "Flame retardants: Persistent pollutants in land-applied sludges". Nature. 412 (6843): 140–141. Bibcode:2001Natur.412..140H. doi:10.1038/35084130. PMID   11449259. S2CID   4395266.
  16. "Land Application of Municipal Biosolids". Environmental Health - Toxic Substances. United States Geological Survey. Archived from the original on 11 November 2020. Retrieved 24 April 2015.
  17. "Task force named to probe chemical dumping". Charlotte Observer. 2014-02-07.
  18. "DHEC Issues Emergency Regulation, Expands Investigation into PCBs Found at Water Treatment Plants". News Releases. South Carolina Dept. of Health and Environmental Control (SCDHEC). 2013-09-25. Archived from the original on 2013-09-26.
  19. "Fish Consumption Advisories". Food Safety. SCDHEC. Retrieved 2018-08-09.
  20. Perkins, Tom (22 March 2022). "'I don't know how we'll survive': the farmers facing ruin in Maine's 'forever chemicals' crisis". The Guardian. Retrieved 26 March 2022.
  21. "NextGen Water Solutions". UCSB Bren School of Environmental Science & Management. Retrieved 2023-11-01.
  22. "Toxic 'forever chemicals' found in Michigan farm's beef". abcNEWS. ABC News Internet Ventures. Retrieved 28 March 2022.
  23. "PFAS Strategic Roadmap: EPA's Commitments to Action 2021-2024". EPA. 14 October 2021. Retrieved 2022-03-24.
  24. "Toxic 'Risk Assessment of Pollutants in Biosolids". EPA. 26 February 2020. Retrieved 28 March 2022.
  25. Biosolids Applied to Land: Advancing Standards and Practices. National Academy of Sciences. 2002. p. 22. ISBN   0-309-08486-5.
  26. "Assessing the Fate of Emerging Pathogens in Biosolids". Water Environment Research Foundation. Archived from the original on 2015-06-14. Retrieved 2015-05-18.
  27. "Biosolids FAQ, Questions 17-18". water.epa.gov. 23 April 2014. Retrieved 2015-06-21.
  28. Hydromantis, Inc. (2010). "Emerging substances of concern in biosolids: concentrations and effects of treatment processes" (PDF). Canadian Council of Ministers of the Environment. Archived from the original (PDF) on 2015-09-09. Retrieved 2018-11-07.
  29. "Biosolids Management". City of Toronto. 2017-11-17. Retrieved 2024-03-31.
  30. Vancouver, Metro. "Nutrifor 101 | Metro Vancouver". metrovancouver.org. Retrieved 2024-03-31.
  31. "Halton - Halton's Biosolids Management Program". www.halton.ca. Retrieved 2024-03-31.
  32. "Biosolids Management | RDN". www.rdn.bc.ca. Retrieved 2024-03-31.
  33. US EPA, OW (2016-07-13). "Basic Information about Biosolids". www.epa.gov. Retrieved 2024-03-31.
  34. "Biosolids Management | RDN". www.rdn.bc.ca. Retrieved 2024-03-31.
  35. US EPA, OW (2016-07-13). "Basic Information about Biosolids". www.epa.gov. Retrieved 2024-03-31.
  36. "Biogas Utilization Study | City of Barrie". www.barrie.ca. 2024-03-28. Retrieved 2024-03-31.
  37. "Biosolids Master Plan | City of Hamilton". www.hamilton.ca. Retrieved 2024-03-31.
  38. "Application of Municipal Sewage Biosolids to Cropland – Best Management Practices" . Retrieved 2024-03-31.
  39. "A Plain English Guide to the EPA Part 503 Biosolids Rule, Chapter 2 "Land Application of Biosolids"" (PDF). water.epa.gov. 23 April 2014. p. 31. Retrieved 2015-05-20.
  40. Barclay, Eliza (21 January 2014). "Whole Foods Bans Produce Grown With Sludge. But Who Wins?". NPR - The Salt. NPR. Retrieved 26 May 2021.
  41. 1 2 Iranpour, R., Cox, H. H. J., Kearney, R. J., Clark, J. H., Pincince, A. B., & Daigger, G. T. (2004). Regulations for biosolids land application in US and European Union. Journal of Residuals Science & Technology, 1(4), 209-22.
  42. Clarke, R. M., & Cummins, E. (2015). Evaluation of "classic" and emerging contaminants resulting from the application of biosolids to agricultural lands: A review. Human and Ecological Risk Assessment, 21(2), 492-513.
  43. Maria Cristina Collivignarelli, Alessandro Abbà, Andrea Frattarola, Marco Carnevale Miino, Sergio Padovani, Ioannis Katsoyiannis and Vincenzo Torretta. Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability 2019, 11(21), 6015. DOI 10.3390/su11216015 - www.mdpi.com
  44. Gibbs, Tim (Project coordinator - Management Steering Group) (August 2003). Guidelines for the safe application of biosolids to land in New Zealand (PDF). Water NZ. Retrieved 25 May 2021.
  45. Baker, Virginia; et al. (February 2016). "The CIBR/LEI Community Engagement Framework for Biowastes". CIBR Publication Number: 16-02.
  46. Horswell, Jacqui; et al. (2017). "Small Community Collective Biosolids Strategy - Lower North Island" (PDF). Retrieved 21 May 2021.
  47. Lowe Environmental Impact Limited (2020). Part A: A strategy for the collective management of biosolids. Regional Biosolids Strategy: Lower North Island, New Zealand
  48. Ellwood, Brian; Paton, Brittany; Loweh, Hamish; Cass, Sian (2019). "Incorporating Biosolids and Wastewater as a Soil Amendment Into Nutrient Budgets and the Associated Environmental Management Considerations" (PDF). Farmed Landscapes Research Centre Massey University. Archived from the original (PDF) on 2020-01-20.
  49. "Biosolids: A Short Explanation and Discussion" (PDF). WEF/U.S. EPA Biosolids Fact Sheet Project. Water Environment Federation. Retrieved 24 April 2015.
  50. "About us". Milorganite/Milwaukee Metropolitan Sewerage District . Retrieved 27 April 2015.
  51. "What is Loop?". King County Wastewater Treatment Division. Retrieved 20 June 2015.
  52. Wesseler, Sarah (2019-11-20). "In King County, Washington, human waste is a climate solution". Yale Climate Connections. Retrieved 2019-12-11.
  53. "About TAGRO". City of Tacoma. Retrieved 20 June 2015.
  54. "TAGRO". City of Tacoma. Retrieved 2019-12-11.