Euclidean planes in three-dimensional space

Last updated

Plane equation in normal form Plane equation qtl3.svg
Plane equation in normal form

In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space . A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin. While a pair of real numbers suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their embedding in the ambient space .

Contents

Derived concepts

A plane segment (or simply "plane", in lay use) is a planar surface region; it is analogous to a line segment. A bivector is an oriented plane segment, analogous to directed line segments. A face is a plane segment bounding a solid object. [1] A slab is a region bounded by two parallel planes. A parallelepiped is a region bounded by three pairs of parallel planes.

Occurrence in nature

The wavefronts of a plane wave traveling in 3-space Plane wave wavefronts 3D.svg
The wavefronts of a plane wave traveling in 3-space

A plane serves as a mathematical model for many physical phenomena, such as specular reflection in a plane mirror or wavefronts in a traveling plane wave. The free surface of undisturbed liquids tends to be nearly flat (see flatness). The flattest surface ever manufactured is a quantum-stabilized atom mirror. [2] In astronomy, various reference planes are used to define positions in orbit. Anatomical planes may be lateral ("sagittal"), frontal ("coronal") or transversal. In geology, beds (layers of sediments) often are planar. Planes are involved in different forms of imaging, such as the focal plane , picture plane , and image plane .

Beds of sedimentary rock at Parque Geologico do Varvito, Itu, Sao Paulo, Brazil Webysther 20211009102044 - Parque Geologico do Varvito.jpg
Beds of sedimentary rock at Parque Geológico do Varvito, Itu, São Paulo, Brazil

Background

Euclid set forth the first great landmark of mathematical thought, an axiomatic treatment of geometry. [3] He selected a small core of undefined terms (called common notions) and postulates (or axioms) which he then used to prove various geometrical statements. Although the plane in its modern sense is not directly given a definition anywhere in the Elements , it may be thought of as part of the common notions. [4] Euclid never used numbers to measure length, angle, or area. The Euclidean plane equipped with a chosen Cartesian coordinate system is called a Cartesian plane; a non-Cartesian Euclidean plane equipped with a polar coordinate system would be called a polar plane.

Three parallel planes. Planes parallel.svg
Three parallel planes.

A plane is a ruled surface.

Euclidean plane

Bi-dimensional Cartesian coordinate system Cartesian-coordinate-system.svg
Bi-dimensional Cartesian coordinate system

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane .

The set of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called the Euclidean plane, since every Euclidean plane is isomorphic to it.

Representation

This section is solely concerned with planes embedded in three dimensions: specifically, in R3.

Determination by contained points and lines

In a Euclidean space of any number of dimensions, a plane is uniquely determined by any of the following:

Properties

The following statements hold in three-dimensional Euclidean space but not in higher dimensions, though they have higher-dimensional analogues:

Point–normal form and general form of the equation of a plane

In a manner analogous to the way lines in a two-dimensional space are described using a point-slope form for their equations, planes in a three dimensional space have a natural description using a point in the plane and a vector orthogonal to it (the normal vector) to indicate its "inclination".

Specifically, let r0 be the position vector of some point P0 = (x0, y0, z0), and let n = (a, b, c) be a nonzero vector. The plane determined by the point P0 and the vector n consists of those points P, with position vector r, such that the vector drawn from P0 to P is perpendicular to n. Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the desired plane can be described as the set of all points r such that

The dot here means a dot (scalar) product.
Expanded this becomes

which is the point–normal form of the equation of a plane. [5] This is just a linear equation

where

which is the expanded form of

In mathematics it is a common convention to express the normal as a unit vector, but the above argument holds for a normal vector of any non-zero length.

Conversely, it is easily shown that if a, b, c, and d are constants and a, b, and c are not all zero, then the graph of the equation

is a plane having the vector n = (a, b, c) as a normal. [6] This familiar equation for a plane is called the general form of the equation of the plane. [7]

Thus for example a regression equation of the form y = d + ax + cz (with b = −1) establishes a best-fit plane in three-dimensional space when there are two explanatory variables.

Describing a plane with a point and two vectors lying on it

Alternatively, a plane may be described parametrically as the set of all points of the form

Vector description of a plane PlaneR.jpg
Vector description of a plane

where s and t range over all real numbers, v and w are given linearly independent vectors defining the plane, and r0 is the vector representing the position of an arbitrary (but fixed) point on the plane. The vectors v and w can be visualized as vectors starting at r0 and pointing in different directions along the plane. The vectors v and w can be perpendicular, but cannot be parallel.

Describing a plane through three points

Let p1 = (x1, y1, z1), p2 = (x2, y2, z2), and p3 = (x3, y3, z3) be non-collinear points.

Method 1

The plane passing through p1, p2, and p3 can be described as the set of all points (x,y,z) that satisfy the following determinant equations:

Method 2

To describe the plane by an equation of the form , solve the following system of equations:

This system can be solved using Cramer's rule and basic matrix manipulations. Let

If D is non-zero (so for planes not through the origin) the values for a, b and c can be calculated as follows:

These equations are parametric in d. Setting d equal to any non-zero number and substituting it into these equations will yield one solution set.

Method 3

This plane can also be described by the "point and a normal vector" prescription above. A suitable normal vector is given by the cross product

and the point r0 can be taken to be any of the given points p1, p2 or p3 [8] (or any other point in the plane).

Operations

Distance from a point to a plane

In Euclidean space, the distance from a point to a plane is the distance between a given point and its orthogonal projection on the plane, the perpendicular distance to the nearest point on the plane.

It can be found starting with a change of variables that moves the origin to coincide with the given point then finding the point on the shifted plane that is closest to the origin. The resulting point has Cartesian coordinates :

.
The distance between the origin and the point is .

Line–plane intersection

The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) Plane-line intersection.svg
The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.)

In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.

Distinguishing these cases, and determining equations for the point and line in the latter cases, have use in computer graphics, motion planning, and collision detection.

Line of intersection between two planes

Two intersecting planes in three-dimensional space Intersecting planes.svg
Two intersecting planes in three-dimensional space
In analytic geometry, the intersection of two planes in three-dimensional space is a line.

Sphere–plane intersection

When the intersection of a sphere and a plane is not empty or a single point, it is a circle. This can be seen as follows:

Let S be a sphere with center O, P a plane which intersects S. Draw OE perpendicular to P and meeting P at E. Let A and B be any two different points in the intersection. Then AOE and BOE are right triangles with a common side, OE, and hypotenuses AO and BO equal. Therefore, the remaining sides AE and BE are equal. This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [9] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle.

Now consider a point D of the circle C. Since C lies in P, so does D. On the other hand, the triangles AOE and DOE are right triangles with a common side, OE, and legs EA and ED equal. Therefore, the hypotenuses AO and DO are equal, and equal to the radius of S, so that D lies in S. This proves that C is contained in the intersection of P and S.

As a corollary, on a sphere there is exactly one circle that can be drawn through three given points. [10]

The proof can be extended to show that the points on a circle are all a common angular distance from one of its poles. [11]

Compare also conic sections, which can produce ovals.

See also

Notes

  1. Merriam-Webster's Collegiate Dictionary (Eleventh ed.). Springfield, MA: Merriam-Webster. 2004.
  2. Evans, Jon (22 August 2008). "Smoothest surface ever is a mirror for atoms". New Scientist. Retrieved 5 March 2023.
  3. Eves 1963 , p. 19
  4. Joyce, D.E. (1996), Euclid's Elements, Book I, Definition 7, Clark University, retrieved 8 August 2009
  5. Anton 1994 , p. 155
  6. Anton 1994 , p. 156
  7. Weisstein, Eric W. (2009), "Plane", MathWorld--A Wolfram Web Resource, retrieved 8 August 2009
  8. Dawkins, Paul, "Equations of Planes", Calculus III
  9. Proof follows Hobbs, Prop. 304
  10. Hobbs, Prop. 308
  11. Hobbs, Prop. 310

Related Research Articles

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Curl (mathematics)</span> Circulation density in a vector field

In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.

<span class="mw-page-title-main">Cartesian coordinate system</span> Most common coordinate system (geometry)

In geometry, a Cartesian coordinate system in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, called coordinate lines, coordinate axes or just axes of the system. The point where they meet is called the origin and has (0, 0) as coordinates.

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

<span class="mw-page-title-main">Linear equation</span> Equation that does not involve powers or products of variables

In mathematics, a linear equation is an equation that may be put in the form where are the variables, and are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation and may be arbitrary expressions, provided they do not contain any of the variables. To yield a meaningful equation, the coefficients are required to not all be zero.

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Euclidean vector</span> Geometric object that has length and direction

In mathematics, physics, and engineering, a Euclidean vector or simply a vector is a geometric object that has magnitude and direction. Euclidean vectors can be added and scaled to form a vector space. A Euclidean vector is frequently represented by a directed line segment, or graphically as an arrow connecting an initial pointA with a terminal pointB, and denoted by

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Normal (geometry)</span> Line or vector perpendicular to a curve or a surface

In geometry, a normal is an object that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point.

<span class="mw-page-title-main">Homogeneous coordinates</span> Coordinate system used in projective geometry

In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points, including points at infinity, can be represented using finite coordinates. Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix. They are also used in fundamental elliptic curve cryptography algorithms.

In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point lies on a line" or "a line is contained in a plane" are used. The most basic incidence relation is that between a point, P, and a line, l, sometimes denoted P I l. If P I l the pair (P, l) is called a flag. There are many expressions used in common language to describe incidence (for example, a line passes through a point, a point lies in a plane, etc.) but the term "incidence" is preferred because it does not have the additional connotations that these other terms have, and it can be used in a symmetric manner. Statements such as "line l1 intersects line l2" are also statements about incidence relations, but in this case, it is because this is a shorthand way of saying that "there exists a point P that is incident with both line l1 and line l2". When one type of object can be thought of as a set of the other type of object (viz., a plane is a set of points) then an incidence relation may be viewed as containment.

<span class="mw-page-title-main">Real projective plane</span> Compact non-orientable two-dimensional manifold

In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has basic applications to geometry, since the common construction of the real projective plane is as the space of lines in R3 passing through the origin. The real projective plane is then an extension of the (ordinary) plane — to every point (v1,v2) of the ordinary plane, the line spanned by (v1,v2,1) is associated (i.e., the real projective plane is the projective completion of the ordinary plane, cf. also the homogeneous coordinates below) while there are also some “points in the infinity”.

In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.

In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, . Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in and points on a quadric in . A predecessor and special case of Grassmann coordinates, Plücker coordinates arise naturally in geometric algebra. They have proved useful for computer graphics, and also can be extended to coordinates for the screws and wrenches in the theory of kinematics used for robot control.

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

<span class="mw-page-title-main">Trilinear coordinates</span> Coordinate system based on distances from the sidelines of a given triangle

In geometry, the trilinear coordinatesx : y : z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.

<span class="mw-page-title-main">Line–line intersection</span> Common point(s) shared by two lines in Euclidean geometry

In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line. Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.

In Euclidean space, the distance from a point to a plane is the distance between a given point and its orthogonal projection on the plane, the perpendicular distance to the nearest point on the plane.

In geometry, line coordinates are used to specify the position of a line just as point coordinates are used to specify the position of a point.

References