Unit vector

Last updated

In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in (pronounced "v-hat").

Contents

The term direction vector, commonly denoted as d, is used to describe a unit vector being used to represent spatial direction and relative direction. 2D spatial directions are numerically equivalent to points on the unit circle and spatial directions in 3D are equivalent to a point on the unit sphere.

Examples of two 2D direction vectors 2D Direction Vectors.svg
Examples of two 2D direction vectors
Examples of two 3D direction vectors 3D Direction Vectors.tiff
Examples of two 3D direction vectors

The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e.,

where ‖u‖ is the norm (or length) of u. [1] [2] The term normalized vector is sometimes used as a synonym for unit vector.

Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination of unit vectors.

Orthogonal coordinates

Cartesian coordinates

Unit vectors may be used to represent the axes of a Cartesian coordinate system. For instance, the standard unit vectors in the direction of the x, y, and z axes of a three dimensional Cartesian coordinate system are

They form a set of mutually orthogonal unit vectors, typically referred to as a standard basis in linear algebra.

They are often denoted using common vector notation (e.g., x or ) rather than standard unit vector notation (e.g., ). In most contexts it can be assumed that x, y, and z, (or and ) are versors of a 3-D Cartesian coordinate system. The notations (î, ĵ, ), (1, 2, 3), (êx, êy, êz), or (ê1, ê2, ê3), with or without hat, are also used, [1] particularly in contexts where i, j, k might lead to confusion with another quantity (for instance with index symbols such as i, j, k, which are used to identify an element of a set or array or sequence of variables).

When a unit vector in space is expressed in Cartesian notation as a linear combination of x, y, z, its three scalar components can be referred to as direction cosines. The value of each component is equal to the cosine of the angle formed by the unit vector with the respective basis vector. This is one of the methods used to describe the orientation (angular position) of a straight line, segment of straight line, oriented axis, or segment of oriented axis (vector).

Cylindrical coordinates

The three orthogonal unit vectors appropriate to cylindrical symmetry are:

They are related to the Cartesian basis , , by:

The vectors and are functions of and are not constant in direction. When differentiating or integrating in cylindrical coordinates, these unit vectors themselves must also be operated on. The derivatives with respect to are:

Spherical coordinates

The unit vectors appropriate to spherical symmetry are: , the direction in which the radial distance from the origin increases; , the direction in which the angle in the x-y plane counterclockwise from the positive x-axis is increasing; and , the direction in which the angle from the positive z axis is increasing. To minimize redundancy of representations, the polar angle is usually taken to lie between zero and 180 degrees. It is especially important to note the context of any ordered triplet written in spherical coordinates, as the roles of and are often reversed. Here, the American "physics" convention [3] is used. This leaves the azimuthal angle defined the same as in cylindrical coordinates. The Cartesian relations are:

The spherical unit vectors depend on both and , and hence there are 5 possible non-zero derivatives. For a more complete description, see Jacobian matrix and determinant. The non-zero derivatives are:

General unit vectors

Common themes of unit vectors occur throughout physics and geometry: [4]

Unit vectorNomenclatureDiagram
Tangent vector to a curve/flux line Tangent normal binormal unit vectors.svg Polar coord unit vectors and normal.svg

A normal vector to the plane containing and defined by the radial position vector and angular tangential direction of rotation is necessary so that the vector equations of angular motion hold.

Normal to a surface tangent plane/plane containing radial position component and angular tangential component

In terms of polar coordinates;

Binormal vector to tangent and normal [5]
Parallel to some axis/line Perpendicular and parallel unit vectors.svg

One unit vector aligned parallel to a principal direction (red line), and a perpendicular unit vector is in any radial direction relative to the principal line.

Perpendicular to some axis/line in some radial direction
Possible angular deviation relative to some axis/line Angular unit vector.svg

Unit vector at acute deviation angle φ (including 0 or π/2 rad) relative to a principal direction.

Curvilinear coordinates

In general, a coordinate system may be uniquely specified using a number of linearly independent unit vectors [1] (the actual number being equal to the degrees of freedom of the space). For ordinary 3-space, these vectors may be denoted . It is nearly always convenient to define the system to be orthonormal and right-handed:

where is the Kronecker delta (which is 1 for i = j, and 0 otherwise) and is the Levi-Civita symbol (which is 1 for permutations ordered as ijk, and −1 for permutations ordered as kji).

Right versor

A unit vector in was called a right versor by W. R. Hamilton, as he developed his quaternions . In fact, he was the originator of the term vector, as every quaternion has a scalar part s and a vector part v. If v is a unit vector in , then the square of v in quaternions is –1. Thus by Euler's formula, is a versor in the 3-sphere. When θ is a right angle, the versor is a right versor: its scalar part is zero and its vector part v is a unit vector in .

See also

Notes

  1. 1 2 3 Weisstein, Eric W. "Unit Vector". mathworld.wolfram.com. Retrieved 2020-08-19.
  2. "Unit Vectors | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2020-08-19.
  3. Tevian Dray and Corinne A. Manogue, Spherical Coordinates, College Math Journal 34, 168-169 (2003).
  4. F. Ayres; E. Mendelson (2009). Calculus (Schaum's Outlines Series) (5th ed.). Mc Graw Hill. ISBN   978-0-07-150861-2.
  5. M. R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis (Schaum's Outlines Series) (2nd ed.). Mc Graw Hill. ISBN   978-0-07-161545-7.

Related Research Articles

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates determined by distance and angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Angular velocity</span> Pseudovector representing an objects change in orientation with respect to time

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mechanics and geometry, the 3D rotation group, often denoted O(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

<span class="mw-page-title-main">Vector fields in cylindrical and spherical coordinates</span> Vector field representation in 3D curvilinear coordinate systems

Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map protections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

<span class="mw-page-title-main">Axis–angle representation</span> Parameterization of a rotation into a unit vector and angle

In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained. For example, the elevation and azimuth angles of e suffice to locate it in any particular Cartesian coordinate frame.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

References