Versor

Last updated

In mathematics, a versor is a quaternion of norm one (a unit quaternion). Each versor has the form

Contents

where the r2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions). The corresponding 3-dimensional rotation has the angle 2a about the axis r in axis–angle representation. In case a = π/2 (a right angle), then , and the resulting unit vector is termed a right versor .

The collection of versors with quaternion multiplication forms a group, and the set of versors is a 3-sphere in the 4-dimensional quaternion algebra.

Presentation on 3- and 2-spheres

arc AB + arc BC = arc AC Spherical triangle.svg
arc AB + arc BC = arc AC

Hamilton denoted the versor of a quaternion q by the symbol Uq. He was then able to display the general quaternion in polar coordinate form

q = TqUq,

where Tq is the norm of q. The norm of a versor is always equal to one; hence they occupy the unit 3-sphere in H. Examples of versors include the eight elements of the quaternion group. Of particular importance are the right versors, which have angle π/2. These versors have zero scalar part, and so are vectors of length one (unit vectors). The right versors form a sphere of square roots of 1 in the quaternion algebra. The generators i, j, and k are examples of right versors, as well as their additive inverses. Other versors include the twenty-four Hurwitz quaternions that have the norm 1 and form vertices of a 24-cell polychoron.

Hamilton defined a quaternion as the quotient of two vectors. A versor can be defined as the quotient of two unit vectors. For any fixed plane Π the quotient of two unit vectors lying in Π depends only on the angle (directed) between them, the same a as in the unit vector–angle representation of a versor explained above. That's why it may be natural to understand corresponding versors as directed arcs that connect pairs of unit vectors and lie on a great circle formed by intersection of Π with the unit sphere, where the plane Π passes through the origin. Arcs of the same direction and length (or, the same, subtended angle in radians) are equipollent and correspond to the same versor. [1]

Such an arc, although lying in the three-dimensional space, does not represent a path of a point rotating as described with the sandwiched product with the versor. Indeed, it represents the left multiplication action of the versor on quaternions that preserves the plane Π and the corresponding great circle of 3-vectors. The 3-dimensional rotation defined by the versor has the angle two times the arc's subtended angle, and preserves the same plane. It is a rotation about the corresponding vector r, that is perpendicular to Π.

On three unit vectors, Hamilton writes [2]

and

imply

Multiplication of quaternions of norm one corresponds to the (non-commutative) "addition" of great circle arcs on the unit sphere. Any pair of great circles either is the same circle or has two intersection points. Hence, one can always move the point B and the corresponding vector to one of these points such that the beginning of the second arc will be the same as the end of the first arc.

An equation

implicitly specifies the unit vector–angle representation for the product of two versors. Its solution is an instance of the general Campbell–Baker–Hausdorff formula in Lie group theory. As the 3-sphere represented by versors in is a 3-parameter Lie group, practice with versor compositions is a step into Lie theory. Evidently versors are the image of the exponential map applied to a ball of radius π in the quaternion subspace of vectors.

Versors compose as aforementioned vector arcs, and Hamilton referred to this group operation as "the sum of arcs", but as quaternions they simply multiply.

The geometry of elliptic space has been described as the space of versors. [3]

Representation of SO(3)

The orthogonal group in three dimensions, rotation group SO(3), is frequently interpreted with versors via the inner automorphism where u is a versor. Indeed, if

and vector s is perpendicular to r,

then

by calculation. [4] The plane is isomorphic to and the inner automorphism, by commutativity, reduces to the identity mapping there. Since quaternions can be interpreted as an algebra of two complex dimensions, the rotation action can also be viewed through the special unitary group SU(2).

For a fixed r, versors of the form exp(ar) where a  (−π, π], form a subgroup isomorphic to the circle group. Orbits of the left multiplication action of this subgroup are fibers of a fiber bundle over the 2-sphere, known as Hopf fibration in the case r = i; other vectors give isomorphic, but not identical fibrations. In 2003 David W. Lyons [5] wrote "the fibers of the Hopf map are circles in S3" (page 95). Lyons gives an elementary introduction to quaternions to elucidate the Hopf fibration as a mapping on unit quaternions.

Versors have been used to represent rotations of the Bloch sphere with quaternion multiplication. [6]

Elliptic space

The facility of versors illustrate elliptic geometry, in particular elliptic space, a three-dimensional realm of rotations. The versors are the points of this elliptic space, though they refer to rotations in 4-dimensional Euclidean space. Given two fixed versors u and v, the mapping is an elliptic motion. If one of the fixed versors is 1, then the motion is a Clifford translation of the elliptic space, named after William Kingdon Clifford who was a proponent of the space. An elliptic line through versor u is Parallelism in the space is expressed by Clifford parallels. One of the methods of viewing elliptic space uses the Cayley transform to map the versors to

Subgroups

The set of all versors, with their multiplication as quaternions, forms a continuous group G. For a fixed pair {r, −r } of right versors, is a one-parameter subgroup that is isomorphic to the circle group.

Next consider the finite subgroups, beyond the quaternion group Q8: [7] [8]

As noted by Adolf Hurwitz, the 16 quaternions ( ±1 ±i ±j ±k)/2 all have norm one, so they are in G. Joined with Q8, these unit Hurwitz quaternions form a group G2 of order 24 called the binary tetrahedral group. The group elements, taken as points on S3, form a 24-cell.

By a process of bitruncation of the 24-cell, the 48-cell on G is obtained, and these versors multiply as the binary octahedral group.

Another subgroup is formed by 120 icosians which multiply in the manner of the binary icosahedral group.

Hyperbolic versor

A hyperbolic versor is a generalization of quaternionic versors to indefinite orthogonal groups, such as Lorentz group. It is defined as a quantity of the form

where

Such elements arise in algebras of mixed signature, for example split-complex numbers or split-quaternions. It was the algebra of tessarines discovered by James Cockle in 1848 that first provided hyperbolic versors. In fact, James Cockle wrote the above equation (with j in place of r) when he found that the tessarines included the new type of imaginary element.

This versor was used by Homersham Cox (1882/83) in relation to quaternion multiplication. [9] [10] The primary exponent of hyperbolic versors was Alexander Macfarlane as he worked to shape quaternion theory to serve physical science. [11] He saw the modelling power of hyperbolic versors operating on the split-complex number plane, and in 1891 he introduced hyperbolic quaternions to extend the concept to 4-space. Problems in that algebra led to use of biquaternions after 1900. In a widely circulated review of 1899, Macfarlane said:

...the root of a quadratic equation may be versor in nature or scalar in nature. If it is versor in nature, then the part affected by the radical involves the axis perpendicular to the plane of reference, and this is so, whether the radical involves the square root of minus one or not. In the former case the versor is circular, in the latter hyperbolic. [12]

Today the concept of a one-parameter group subsumes the concepts of versor and hyperbolic versor as the terminology of Sophus Lie has replaced that of Hamilton and Macfarlane. In particular, for each r such that r r = +1 or r r = 1, the mapping takes the real line to a group of hyperbolic or ordinary versors. In the ordinary case, when r and r are antipodes on a sphere, the one-parameter groups have the same points but are oppositely directed. In physics, this aspect of rotational symmetry is termed a doublet.

In 1911 Alfred Robb published his Optical Geometry of Motion in which he identified the parameter rapidity which specifies a change in frame of reference. This rapidity parameter corresponds to the real variable in a one-parameter group of hyperbolic versors. With the further development of special relativity the action of a hyperbolic versor came to be called a Lorentz boost.

Lie theory

Sophus Lie was less than a year old when Hamilton first described quaternions, but Lie's name has become associated with all groups generated by exponentiation. The set of versors with their multiplication has been denoted Sl(1,q) by Robert Gilmore in his text on Lie theory. [13] Sl(1,q) is the special linear group of one dimension over quaternions, the "special" indicating that all elements are of norm one. The group is isomorphic to SU(2,c), a special unitary group, a frequently used designation since quaternions and versors are sometimes considered archaic for group theory. The special orthogonal group SO(3,r) of rotations in three dimensions is closely related: it is a 2:1 homomorphic image of SU(2,c).

The subspace is called the Lie algebra of the group of versors. The commutator product just double the cross product of two vectors, forms the multiplication in the Lie algebra. The close relation to SU(1,c) and SO(3,r) is evident in the isomorphism of their Lie algebras. [13]

Lie groups that contain hyperbolic versors include the group on the unit hyperbola and the special unitary group SU(1,1).

Etymology

The word is derived from Latin versari = "to turn" with the suffix -or forming a noun from the verb (i.e. versor = "the turner"). It was introduced by William Rowan Hamilton in the 1840s in the context of his quaternion theory.

Versors in geometric algebra

The term "versor" is generalised in geometric algebra to indicate a member of the algebra that can be expressed as the product of invertible vectors, . [14] [15]

Just as a quaternion versor can be used to represent a rotation of a quaternion , mapping , so a versor in Geometric Algebra can be used to represent the result of reflections on a member of the algebra, mapping .

A rotation can be considered the result of two reflections, so it turns out a quaternion versor can be identified as a 2-versor in the geometric algebra of three real dimensions .

In a departure from Hamilton's definition, multivector versors are not required to have unit norm, just to be invertible. Normalisation can still be useful however, so it is convenient to designate versors as unit versors in a geometric algebra if , where the tilde denotes reversion of the versor.

See also

Notes

  1. N. Mukunda, Rajiah Simon and George Sudarshan (1989) "The theory of screws: a new geometric representation for the group SU(1,1), Journal of Mathematical Physics 30(5): 1000–1006 MR 0992568
  2. Elements of Quaternions, 2nd edition, v. 1, p. 146
  3. Harold Scott MacDonald Coxeter (1950), Review of "Quaternions and Elliptic Space" (by Georges Lemaître) from Mathematical Reviews, MR 0031739 (subscription needed)
  4. Rotation representation
  5. Lyons, David W. (April 2003), "An Elementary Introduction to the Hopf Fibration" (PDF), Mathematics Magazine , 76 (2): 87–98, CiteSeerX   10.1.1.583.3499 , doi:10.2307/3219300, ISSN   0025-570X, JSTOR   3219300
  6. K. B. Wharton, D. Koch (2015) "Unit quaternions and the Bloch Sphere", Journal of Physics A 48(23) doi : 10.1088/1751-8113/48/23/235302 MR 3355237
  7. Irving Stringham (1881) "Determination of the finite quaternion groups", American Journal of Mathematics 4(1–4):345–57 doi : 10.2307/2369172
  8. John H. Conway & Derek A. Smith (2003) On Quaternions and Octoniions: Their Geometry, Arithmetic and Symmetry, § 3.5 The Finite Groups of Quaternions, page 33, A. K. Peters ISBN   1-56881-134-9
  9. Cox, H. (1883) [1882]. "On the Application of Quaternions and Grassmann's Ausdehnungslehre to different kinds of Uniform Space". Transactions of the Cambridge Philosophical Society . 13: 69–143.
  10. Cox, H. (1883) [1882]. "On the Application of Quaternions and Grassmann's Ausdehnungslehre to different kinds of Uniform Space". Proc. Camb. Phil. Soc. 4: 194–196.
  11. Alexander Macfarlane (1894) Papers on Space Analysis, especially papers #2, 3, & 5, B. Westerman, New York, weblink from archive.org
  12. Science, 9:326 (1899)
  13. 1 2 Robert Gilmore (1974) Lie Groups, Lie Algebras and some of their Applications, chapter 5: Some simple examples, pages 120–35, Wiley ISBN   0-471-30179-5 Gilmore denotes the real, complex, and quaternion division algebras by r, c, and q, rather than the more common R, C, and H.
  14. Hestenes & Sobczyk 1984, p. 103.
  15. Dorst, Fontijne & Mann 2007, p. 204.

Related Research Articles

<span class="mw-page-title-main">3-sphere</span> Mathematical object

In mathematics, a 3-sphere, glome or hypersphere is a higher-dimensional analogue of a sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere, the boundary of a ball in four dimensions is a 3-sphere. Topologically, a 3-sphere is an example of a 3-manifold, and it is also an n-sphere.

<span class="mw-page-title-main">Quaternion</span> Noncommutative extension of the complex numbers

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by H, or in blackboard bold by Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form

<span class="mw-page-title-main">Unit vector</span> Vector of length one

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.

Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point. Because of this, the elliptic geometry described in this article is sometimes referred to as single elliptic geometry whereas spherical geometry is sometimes referred to as double elliptic geometry.

<span class="mw-page-title-main">Rotation (mathematics)</span> Motion of a certain space that preserves at least one point

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

<span class="mw-page-title-main">Hopf fibration</span> Fiber bundle of the 3-sphere over the 2-sphere, with 1-spheres as fibers

In the mathematical field of differential topology, the Hopf fibration describes a 3-sphere in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function from the 3-sphere onto the 2-sphere such that each distinct point of the 2-sphere is mapped from a distinct great circle of the 3-sphere. Thus the 3-sphere is composed of fibers, where each fiber is a circle — one for each point of the 2-sphere.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

<span class="mw-page-title-main">Bivector</span> Sum of directed areas in exterior algebra

In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. Considering a scalar as a degree-zero quantity and a vector as a degree-one quantity, a bivector is of degree two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and vector quaternions in three dimensions. They can be used to generate rotations in a space of any number of dimensions, and are a useful tool for classifying such rotations. They are also used in physics.

In abstract algebra, the algebra of hyperbolic quaternions is a nonassociative algebra over the real numbers with elements of the form

In abstract algebra, the biquaternions are the numbers w + xi + yj + zk, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof:

Screw theory is the algebraic calculation of pairs of vectors, such as angular and linear velocity, or forces and moments, that arise in the kinematics and dynamics of rigid bodies.

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

<span class="mw-page-title-main">Vector notation</span> Use of coordinates for representing vectors

In mathematics and physics, vector notation is a commonly used notation for representing vectors, which may be Euclidean vectors, or more generally, members of a vector space.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

<span class="mw-page-title-main">Axis–angle representation</span> Parameterization of a rotation into a unit vector and angle

In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained. For example, the elevation and azimuth angles of e suffice to locate it in any particular Cartesian coordinate frame.

William Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the modern definition only by the terminology which is used.

Six-dimensional space is any space that has six dimensions, six degrees of freedom, and that needs six pieces of data, or coordinates, to specify a location in this space. There are an infinite number of these, but those of most interest are simpler ones that model some aspect of the environment. Of particular interest is six-dimensional Euclidean space, in which 6-polytopes and the 5-sphere are constructed. Six-dimensional elliptical space and hyperbolic spaces are also studied, with constant positive and negative curvature.

References