One-parameter group

Last updated

In mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism

Contents

from the real line (as an additive group) to some other topological group . If is injective then , the image, will be a subgroup of that is isomorphic to as an additive group.

One-parameter groups were introduced by Sophus Lie in 1893 to define infinitesimal transformations. According to Lie, an infinitesimal transformation is an infinitely small transformation of the one-parameter group that it generates. [1] It is these infinitesimal transformations that generate a Lie algebra that is used to describe a Lie group of any dimension.

The action of a one-parameter group on a set is known as a flow. A smooth vector field on a manifold, at a point, induces a local flow - a one parameter group of local diffeomorphisms, sending points along integral curves of the vector field. The local flow of a vector field is used to define the Lie derivative of tensor fields along the vector field.

Definition

A curve is called one-parameter subgroup of if it satisfies the condition [2]

.

Examples

In Lie theory, one-parameter groups correspond to one-dimensional subspaces of the associated Lie algebra. The Lie group–Lie algebra correspondence is the basis of a science begun by Sophus Lie in the 1890s.

Another important case is seen in functional analysis, with being the group of unitary operators on a Hilbert space. See Stone's theorem on one-parameter unitary groups.

In his monograph Lie Groups, P. M. Cohn gave the following theorem:

Any connected 1-dimensional Lie group is analytically isomorphic either to the additive group of real numbers , or to , the additive group of real numbers . In particular, every 1-dimensional Lie group is locally isomorphic to . [3]

Physics

In physics, one-parameter groups describe dynamical systems. [4] Furthermore, whenever a system of physical laws admits a one-parameter group of differentiable symmetries, then there is a conserved quantity, by Noether's theorem.

In the study of spacetime the use of the unit hyperbola to calibrate spatio-temporal measurements has become common since Hermann Minkowski discussed it in 1908. The principle of relativity was reduced to arbitrariness of which diameter of the unit hyperbola was used to determine a world-line. Using the parametrization of the hyperbola with hyperbolic angle, the theory of special relativity provided a calculus of relative motion with the one-parameter group indexed by rapidity. The rapidity replaces the velocity in kinematics and dynamics of relativity theory. Since rapidity is unbounded, the one-parameter group it stands upon is non-compact. The rapidity concept was introduced by E.T. Whittaker in 1910, and named by Alfred Robb the next year. The rapidity parameter amounts to the length of a hyperbolic versor, a concept of the nineteenth century. Mathematical physicists James Cockle, William Kingdon Clifford, and Alexander Macfarlane had all employed in their writings an equivalent mapping of the Cartesian plane by operator , where is the hyperbolic angle and .

In GL(n,C)

An important example in the theory of Lie groups arises when is taken to be , the group of invertible matrices with complex entries. In that case, a basic result is the following: [5]

Theorem: Suppose is a one-parameter group. Then there exists a unique matrix such that
for all .

It follows from this result that is differentiable, even though this was not an assumption of the theorem. The matrix can then be recovered from as

.

This result can be used, for example, to show that any continuous homomorphism between matrix Lie groups is smooth. [6]

Topology

A technical complication is that as a subspace of may carry a topology that is coarser than that on ; this may happen in cases where is injective. Think for example of the case where is a torus , and is constructed by winding a straight line round at an irrational slope.

In that case the induced topology may not be the standard one of the real line.

See also

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and image of the homomorphism.

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .

<span class="mw-page-title-main">Lie group</span> Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In mathematics, specifically abstract algebra, the isomorphism theorems are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.

<span class="mw-page-title-main">Semidirect product</span> Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:

In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation.

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .

<span class="mw-page-title-main">Classical group</span>

In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.

In mathematics, a weak Lie algebra bundle

<span class="mw-page-title-main">Representation theory</span> Branch of mathematics that studies abstract algebraic structures

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.

<span class="mw-page-title-main">Lie point symmetry</span>

Lie point symmetry is a concept in advanced mathematics. Towards the end of the nineteenth century, Sophus Lie introduced the notion of Lie group in order to study the solutions of ordinary differential equations (ODEs). He showed the following main property: the order of an ordinary differential equation can be reduced by one if it is invariant under one-parameter Lie group of point transformations. This observation unified and extended the available integration techniques. Lie devoted the remainder of his mathematical career to developing these continuous groups that have now an impact on many areas of mathematically based sciences. The applications of Lie groups to differential systems were mainly established by Lie and Emmy Noether, and then advocated by Élie Cartan.

In mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other. However, for simply connected Lie groups, the Lie group-Lie algebra correspondence is one-to-one.

<span class="mw-page-title-main">Exponential map (Lie theory)</span>

In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.

Local rigidity theorems in the theory of discrete subgroups of Lie groups are results which show that small deformations of certain such subgroups are always trivial. It is different from Mostow rigidity and weaker than superrigidity.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

References

  1. Sophus Lie (1893) Vorlesungen über Continuierliche Gruppen, English translation by D.H. Delphenich, §8, link from Neo-classical Physics
  2. Nakahara. Geometry, topology, and physics. CRC Press. p. 232. ISBN   9780750306065.
  3. Paul Cohn (1957) Lie Groups, page 58, Cambridge Tracts in Mathematics and Mathematical Physics #46
  4. Zeidler, E. (1995) Applied Functional Analysis: Main Principles and Their Applications Springer-Verlag
  5. Hall 2015 Theorem 2.14
  6. Hall 2015 Corollary 3.50