HLSL2GLSL

Last updated
Developer(s) various [1]
Repository
Type CGI tool
License BSD License [1]

HLSL2GLSL is a command line tool and a library that translates shaders written in High Level Shader Language (HLSL) for Direct3D 9 into the OpenGL Shading Language (GLSL). [2]

HLSL2GLSL was originally released by ATI Technologies under a BSD License. The last release was v0.9 from 2006. HLSL2GLSL is not part of GPUOpen.

The project was forked in 2010 to fix issues and add features like OpenGL ES support. [3] It is now used by Unity [4] and OGRE to translate Cg/HLSL shaders into GLSL for mobile platforms. [5]

The project has been criticized for generating low-quality, bloated code. At the XDC2014, Matt Turner pointed out that many benchmark examples in Mesa's shader-db are generated by conversion and of poor quality. [6]

Related Research Articles

<span class="mw-page-title-main">OpenGL</span> Cross-platform graphics API

OpenGL is a cross-language, cross-platform application programming interface (API) for rendering 2D and 3D vector graphics. The API is typically used to interact with a graphics processing unit (GPU), to achieve hardware-accelerated rendering.

<span class="mw-page-title-main">High-Level Shader Language</span> Shading language

The High-Level Shader Language or High-Level Shading Language (HLSL) is a proprietary shading language developed by Microsoft for the Direct3D 9 API to augment the shader assembly language, and went on to become the required shading language for the unified shader model of Direct3D 10 and higher.

Irrlicht is an open-source game engine written in C++. It is cross-platform, officially running on Windows, macOS, Linux and Windows CE and due to its open nature ports to other systems are available, including FreeBSD, Xbox, PlayStation Portable, Symbian, iPhone, AmigaOS 4, Sailfish OS via a QT/Qml wrapper, and Google Native Client.

hqx is a set of 3 image upscaling algorithms developed by Maxim Stepin. The algorithms are hq2x, hq3x, and hq4x, which magnify by a factor of 2, 3, and 4 respectively. It was initially created in 2003 for the Super NES emulator ZSNES, and is used in emulators such as Nestopia, FCEUX, higan, and Snes9x.

<span class="mw-page-title-main">Shader</span> Type of program in a graphical processing unit (GPU)

In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene—a process known as shading. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units.

<span class="mw-page-title-main">OpenGL ES</span> Subset of the OpenGL API for embedded systems

OpenGL for Embedded Systems is a subset of the OpenGL computer graphics rendering application programming interface (API) for rendering 2D and 3D computer graphics such as those used by video games, typically hardware-accelerated using a graphics processing unit (GPU). It is designed for embedded systems like smartphones, tablet computers, video game consoles and PDAs. OpenGL ES is the "most widely deployed 3D graphics API in history".

COLLADA is an interchange file format for interactive 3D applications. It is managed by the nonprofit technology consortium, the Khronos Group, and has been adopted by ISO as a publicly available specification, ISO/PAS 17506.

Mesa, also called Mesa3D and The Mesa 3D Graphics Library, is an open source implementation of OpenGL, Vulkan, and other graphics API specifications. Mesa translates these specifications to vendor-specific graphics hardware drivers.

A shading language is a graphics programming language adapted to programming shader effects. Shading languages usually consist of special data types like "vector", "matrix", "color" and "normal".

<span class="mw-page-title-main">Software rendering</span> Generating images by computer software

Software rendering is the process of generating an image from a model by means of computer software. In the context of computer graphics rendering, software rendering refers to a rendering process that is not dependent upon graphics hardware ASICs, such as a graphics card. The rendering takes place entirely in the CPU. Rendering everything with the (general-purpose) CPU has the main advantage that it is not restricted to the (limited) capabilities of graphics hardware, but the disadvantage is that more transistors are needed to obtain the same speed.

<span class="mw-page-title-main">OpenGL Shading Language</span> High-level shading language

OpenGL Shading Language (GLSL) is a high-level shading language with a syntax based on the C programming language. It was created by the OpenGL ARB to give developers more direct control of the graphics pipeline without having to use ARB assembly language or hardware-specific languages.

UNIGINE is a proprietary cross-platform game engine developed by UNIGINE Company used in simulators, virtual reality systems, serious games and visualization. It supports OpenGL 4, Vulkan and DirectX 12.

<span class="mw-page-title-main">Perl OpenGL</span>

Perl OpenGL (POGL) is a portable, compiled wrapper library that allows OpenGL to be used in the Perl programming language.

<span class="mw-page-title-main">WebGL</span> JavaScript bindings for OpenGL in web browsers

WebGL is a JavaScript API for rendering interactive 2D and 3D graphics within any compatible web browser without the use of plug-ins. WebGL is fully integrated with other web standards, allowing GPU-accelerated usage of physics, image processing, and effects in the HTML canvas. WebGL elements can be mixed with other HTML elements and composited with other parts of the page or page background.

<span class="mw-page-title-main">Three.js</span> JavaScript library for 3D graphics

Three.js is a cross-browser JavaScript library and application programming interface (API) used to create and display animated 3D computer graphics in a web browser using WebGL. The source code is hosted in a repository on GitHub.

<span class="mw-page-title-main">Godot (game engine)</span> Cross-platform, open-source game engine

Godot is a cross-platform, free and open-source game engine released under the permissive MIT license. It was initially developed by Argentine software developers Juan Linietsky and Ariel Manzur for several companies in Latin America prior to its public release in 2014. The development environment runs on many platforms, and can export to several more. It is designed to create both 2D and 3D games targeting PC, mobile, and web platforms and can also be used to develop non-game software, including editors.

Stage3D is an Adobe Flash Player API for rendering interactive 3D graphics with GPU-acceleration, within Flash games and applications. Flash Player or AIR applications written in ActionScript 3 may use Stage3D to render 3D graphics, and such applications run natively on Windows, Mac OS X, Linux, Apple iOS and Google Android. Stage3D is similar in purpose and design to WebGL.

Vulkan is a low-level low-overhead, cross-platform API and open standard for 3D graphics and computing. It was originally developed as Mantle by AMD, but was later given to Khronos Group. It was intended to address the shortcomings of OpenGL, and allow developers more control over the GPU. It is designed to support a wide variety of GPUs, CPUs and operating systems, it is also designed to work with modern multi-core CPUs.

<span class="mw-page-title-main">Standard Portable Intermediate Representation</span>

Standard Portable Intermediate Representation (SPIR) is an intermediate language for parallel computing and graphics by Khronos Group. It is used in multiple execution environments, including the Vulkan graphics API and the OpenCL compute API, to represent a shader or kernel. It is also used as an interchange language for cross compilation.

<span class="mw-page-title-main">Cg (programming language)</span> Shading language

Cg and High-Level Shader Language (HLSL) are two names given to a high-level shading language developed by Nvidia and Microsoft for programming shaders. Cg/HLSL is based on the C programming language and although they share the same core syntax, some features of C were modified and new data types were added to make Cg/HLSL more suitable for programming graphics processing units.

References

  1. 1 2 "license". GitHub .
  2. "HLSL2GLSL v0.9 DirectX 9 HLSL to OpenGL Shading Language translator". OpenGL.org. Retrieved 2006-11-29.
  3. Unity. "hlsl2glslfork". GitHub. Retrieved 2011-05-18.
  4. "Compiling HLSL into GLSL in Unity 3" . Retrieved 2011-01-05.
  5. "Ogre forums: Added Cg support to the ES 2.x render system" . Retrieved 2011-01-05.
  6. Video on YouTube.