Radeon HD 4000 series

Last updated
ATI Radeon HD 4000 series
Release dateJune 16, 2008;14 years ago (June 16, 2008)
CodenameRadeon R700 series
M9x series
Architecture TeraScale 1
Transistors
  • 242M 55 nm (RV710)
  • 514M 55 nm (RV730)
  • 826M 40 nm (RV740)
  • 956M 55 nm (RV770)
  • 959M 55 nm (RV790)
Cards
Entry-level4350, 4550, 4570
Mid-range4650, 4670, 4730, 4750, 4770
High-end4830, 4850, 4860, 4870
Enthusiast4890, 4850X2, 4870X2
API support
Direct3D Direct3D 10.1 [1]
Shader Model 4.1
OpenCL OpenCL 1.1 [2]
OpenGL OpenGL 3.3 [3] [4]
History
Predecessor Radeon HD 3000 series
Successor Radeon HD 5000 series
Support status
Unsupported

The Radeon R700 is the engineering codename for a graphics processing unit series developed by Advanced Micro Devices under the ATI brand name. The foundation chip, codenamed RV770, was announced and demonstrated on June 16, 2008 as part of the FireStream 9250 and Cinema 2.0 initiative launch media event, [5] with official release of the Radeon HD 4800 series on June 25, 2008. Other variants include enthusiast-oriented RV790, mainstream product RV730, RV740 and entry-level RV710.

Contents

Its direct competition was nVidia's GeForce 200 series, which launched in the same month.

Architecture

This article is about all products under the brand "Radeon HD 4000 Series". All products implement TeraScale 1 microarchitecture.

Execution units

The RV770 extends the R600's unified shader architecture by increasing the stream processing unit count to 800 units (up from 320 units in the R600), which are grouped into 10 SIMD cores composed of 16 shader cores containing 4 FP MADD/DP ALUs and 1 MADD/transcendental ALU. The RV770 retains the R600's 4 Quad ROP cluster count, however, they are faster and now have dedicated hardware-based AA resolve in addition to the shader-based resolve of the R600 architecture. The RV770 also has 10 texture units, each of which can handle 4 addresses, 16 FP32 samples, and 4 FP32 filtering functions per clock cycle. [6]

Memory and internal buses

RV770 features a 256-bit memory controller and is the first GPU to support GDDR5 memory, which runs at 900 MHz giving an effective transfer rate of 3.6 GHz and memory bandwidth of up to 115 GB/s. The internal ring bus from the R520 and R600 has been replaced by the combination of a crossbar and an internal hub. [7]

Video acceleration

The SIP block UVD 2.0-2.2 implemented on the dies of all Radeon HD 4000 Series Desktop gpus, 48xx series is using uvd 2.0, 47xx-46xx-45xx-43xx series is using uvd 2.2.

Support is available for Microsoft Windows at release, for Linux with Catalyst 8.10. The free and open-source driver requires Linux kernel 3.10 in combination with Mesa 9.1 (exposed via the widely adopted VDPAU) [8] ), offering full hardware MPEG-2, H.264/MPEG-4 AVC and VC-1 decoding and the support for dual video streams, the Advanced Video Processor (AVP) also saw an upgrade with DVD upscaling capability and dynamic contrast feature. The RV770 series GPU also supports xvYCC color space output and 7.1 surround sound output (LPCM, AC3, DTS) over HDMI. The RV770 GPU also supports an Accelerated Video Transcoding (AVT) feature, which has video transcoding functions being assisted by the GPU, through stream processing.

GPU interconnect enhancements

R700 inter-GPU communications architecture R700 interconnect.svg
R700 inter-GPU communications architecture

This generation of dual-GPU design retains the use of a PCI Express bridge, PLX PEX 8647 with a power dissipation of 3.8 watts inclusive of PCI Express 2.0 support, allowing two GPUs on the same PCI Express slot with doubled bandwidth over the past generation of product (Radeon HD 3870 X2). Subsequent generations of dual-GPU design also feature an interconnect for inter-GPU communications through the implementation of a CrossFire X SidePort on each GPU, giving extra 5 GB/s full-duplex inter-GPU bandwidth. These two features increase total bandwidth for dual-GPU designs to 21.8 GB/s.

OpenCL (API)

OpenCL accelerates many scientific Software Packages against CPU up to factor 10 or 100 and more. Open CL 1.0 to 1.1 are supported for all Chips with RV7xx. [9]

Desktop products

Radeon HD 4800

The Radeon HD 4850 was announced on June 19, 2008 while the Radeon HD 4870 was announced on June 25, 2008. They are both based on the RV770 GPU, packing 956 million transistors and being produced on a 55 nm process. The Radeon HD 4850 currently uses GDDR3 memory, while the Radeon HD 4870 uses GDDR5 memory.

Another variant, the Radeon HD 4830 was updated on October 23, 2008, featuring the RV770 LE GPU with a 256-bit GDDR3 memory interface, and 640 shader processors. Basically the RV770 LE is a RV770 with some functional units disabled.

Dual GPU products using two RV770 GPUs, codenamed R700, were also announced. One product named Radeon HD 4870 X2, featuring 2×1GB GDDR5 memory, was released on August 12, 2008, while another dual-GPU product, the Radeon HD 4850 X2, with GDDR3 memory and lower clock speeds, is also available.

A minor update was introduced on April 2, 2009 with the launch of Radeon HD 4890 graphics cards based on the RV790 GPU. Featuring an improved design with decoupling capacitors to reduce signal noise, [10] altered ASIC power distribution and re-timed the whole GPU chip, which resulted in a slight increase in die size but overall much better stability at high clock rates and a higher default clock. On August 18, 2009, AMD released a stripped down variant of the RV790 GPU called the RV790GT that is used by the Radeon HD 4860 which is now available in all markets.

Radeon HD 4700

ATI Radeon HD 4770 ATI Radeon HD 4770 Graphics Card-oblique view.jpg
ATI Radeon HD 4770

The Radeon HD 4700 series was announced on April 28, 2009. The Radeon HD 4770, is based on the RV740 GPU, packs 826 million transistors and being produced on the latest 40 nm process. The Radeon HD 4730 was introduced June 8, 2009, unlike the RV740 based Radeon HD 4770, the 4730 is a stripped down 55 nm RV770 GPU, named the RV770CE. The 4730 packs 956 million transistors, and uses GDDR5 memory on a 128-bit bus. On September 9, 2009, the RV740PRO based Radeon HD 4750 was released exclusively to the Chinese market. The Radeon HD 4750 is based on the 40 nm RV740 of the Radeon HD 4770 but features a lower clock speed and the absence of a six-pin auxiliary power input.

Radeon HD 4600

The Radeon HD 4600 series was announced on September 10, 2008. All variants are based on the RV730 GPU, packing 514 million transistors and being produced on a 55 nm process. The PCIe version 4600 series products do not require external power connectors. [11] [12] [13] [14] More recently, an AGP version of the 4670 has been released. This does require an external power connector. As of March 2018, this elusive AGP card remains among the last cards using the aging bus.

Radeon HD 4300/HD 4500

ATI Radeon HD 4550 Sapphire ATI Radeon HD 4550.jpg
ATI Radeon HD 4550

The Radeon HD 4350 and Radeon HD 4550 were announced on September 30, 2008, both based on the RV710 GPU, packing 242 million transistors and being produced on a 55 nm process. Both products use either GDDR3, DDR3 or DDR2 video memory. AMD states these two products have maximum of 20 W and 25 W of power consumption under full load, respectively. [15]

Chipset Table

Desktop Products

Model4LaunchCode nameFab (nm)Transistors (million)Die size (mm2)Bus interfaceClock rateCore config1 Fillrate Memory2Processing power
(GFLOPS)
TDP3 (Watts)Crossfire support API support (version)Release Price (USD)
Core (MHz)Memory (MHz)Pixel (GP/s)Texture (GT/s)Size (MB)Bandwidth (GB/s)Bus typeBus width (bit) Single precision Double precision IdleMax. Direct3D OpenGL OpenCL
Radeon HD 4350Sep 30, 2008RV7105524273PCIe 2.0 ×16
PCIe 2.0 ×1
AGP 8×
600400
650
80:8:42.404.80256
512
1024
6.40
10.4
DDR2
DDR3
6492.0No20No10.13.31.0?
Radeon HD 4550Sep 30, 2008RV7105524273PCIe 2.0 ×16600
600
655
800
80:8:42.404.80256
512
1024
10.5
12.8
DDR2
GDDR3
6496.0No2510.13.31.0?
Radeon HD 4570Nov 25, 2008RV7105524273PCIe 2.0 ×1665050080:8:42.605.2010248.00DDR264104.0No2510.13.31.0?
Radeon HD 4580Nov 20, 2011RV635 PRO55378135PCIe 2.0 ×16796693120:8:43.186.3751222.2GDDR3128191.0No6510.13.31.0?
Radeon HD 4650Sep 10, 2008RV730 PRO55514146PCIe 2.0 ×16
AGP 8×
600
650
400 - 500
500
700
320:32:84.80
5.20
19.2
20.8
256
512
1024
12.8 - 16.0
16.0
22.4
DDR2
GDDR3
GDDR4
64
128
384.0
416.0
No482-Way Crossfire 10.13.31.0?
Radeon HD 4670Sep 10, 2008RV730 XT55514146PCIe 2.0 ×16
AGP 8×
750
750
400 - 500
900
1000
320:32:86.0024.0512
1024
12.8 - 16.0
28.8
32.0
DDR2
GDDR3
GDDR4
128480.0No5910.13.31.079
Radeon HD 4730Jun 8, 2009RV770 CE55956256PCIe 2.0 ×16700
750
900
900
640:32:85.60
6.00
22.4
24.0
51257.6GDDR5128896.0
960.0
179.2
192.0
11010.13.31.0?
Radeon HD 4750Sep 9, 2009RV74040826137PCIe 2.0 ×16730800640:32:1611.723.451251.2GDDR5128934.48010.13.31.0?
Radeon HD 4770Apr 28, 2009RV74040826137PCIe 2.0 ×16750800640:32:1612.024.051251.2GDDR5128960.0192.08010.13.31.0109
Radeon HD 4810May 28, 2009RV770 CE55956256PCIe 2.0 ×16625
750
900
900
640:32:85.00
6.00
20.0
24.0
51257.6GDDR5128800.0
960.0
160.0
192.0
9510.13.31.0?
Radeon HD 4830Oct 21, 2008RV770 LE55956256PCIe 2.0 ×16575900640:32:169.2018.4512
1024
57.6GDDR3
GDDR4
256736.0147.29510.13.31.0$130
Radeon HD 4850Jun 25, 2008RV770 PRO55956256PCIe 2.0 ×16625993800:40:1610.025.0512
1024
2048
63.55GDDR3
GDDR4
GDDR5
2561000200.01104-Way Crossfire 10.13.31.0199

(149)

Radeon HD 4860Sep 9, 2009RV790 GT55959282PCIe 2.0 ×16700750640:32:1611.222.4512
1024
96GDDR5256896.0179.213010.13.31.0?
Radeon HD 4870Jun 25, 2008RV770 XT55956256PCIe 2.0 ×16750900800:40:1612.030.0512
1024
2048
115.2GDDR52561200240.015010.13.31.0299

(225)

Radeon HD 4890Apr 2, 2009RV790 XT55959282PCIe 2.0 ×16850975800:40:1613.634.01024
2048
124.8GDDR52561360272.019010.13.31.0249
Radeon HD 4850 X2Nov 7, 2008R700 (2xRV770 PRO)55956×2256×2PCIe 2.0 ×16625995800:40:16×210.0×225.0×2512×2
1024×2
63.7×2GDDR3256x22000400.02502-Way Crossfire 10.13.31.0339
Radeon HD 4870 X2Aug 12, 2008R700 (2xRV770 XT)55956×2256×2PCIe 2.0 ×16750900800:40:16×212×230×21024×2115.2×2GDDR5256x22400480.028610.13.31.0449
Model4LaunchCode nameFab (nm)Transistors (million)Die size (mm2)Bus interfaceClock rateCore config1FillrateMemory2Processing power
(GFLOPS)
TDP3 (Watts)Crossfire SupportAPI support (version)Release Price (USD)
Core (MHz)Memory (MHz)Pixel (GP/s)Texture (GT/s)Size (MB)Bandwidth (GB/s)Bus typeBus width (bit)Single precisionDouble precisionIdleMax.Direct3DOpenGLOpenCL

1 Unified shaders  : Texture mapping units  : Render output units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
3 The TDP is reference design TDP values from AMD. Different non-reference board designs from vendors may lead to slight variations in actual TDP.
4 All models feature UVD2 & PowerPlay.

IGP (HD 4000)

  • All Radeon HD 4000 IGP models include Direct3D 10.1 and OpenGL 2.0 [16]
ModelLaunchCode nameGraphics coreFab (nm)Transistors (million)Die size (mm2)Bus interfaceCore clock2 (MHz)Core config1 Fillrate Memory3Processing power
(GFLOPS)
Features / Notes
Pixel (GP/s)Texture (GT/s)FP32 (GP/s)Size (MB)Bandwidth (GB/s)Bus typeEffective clock (MHz)Bus width (bit)
Radeon HD 4200 Graphics (785G Chipset)Aug 2009 RS880 RV62055>205~73 (~9 × 8.05)HT 3.050040:4:4221Up to 512 system + optional 128 sideport20.8 (system) + 2.6 (sideport) HT (system) + DDR2-1066 DDR3-1333 (sideport)1333 (sideport)16 (sideport)40 UVD2
Radeon HD 4250 Graphics (880G Chipset)Mar 2010 RS880 5602.242.241.12 HT (system) + DDR3-1333 (sideport)44.8
Radeon HD 4290 Graphics (890GX Chipset) RS880D 7002.82.81.4Up to 512 system + 128 sideport56

1 Unified shaders  : Texture mapping units  : Render output units
2 The clock frequencies may vary in different usage scenarios, as ATI PowerPlay technology is implemented. The clock frequencies listed here refer to the officially announced clock specifications.
3 The sideport is a dedicated memory bus. It preferably used for frame buffer.

Radeon Feature Matrix

The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).

Name of GPU series Wonder Mach 3D Rage Rage Pro Rage 128 R100 R200 R300 R400 R500 R600 RV670 R700 Evergreen Northern
Islands
Southern
Islands
Sea
Islands
Volcanic
Islands
Arctic
Islands
/Polaris
Vega Navi 1x Navi 2x Navi 3x
Released19861991Apr
1996
Mar
1997
Aug
1998
Apr
2000
Aug
2001
Sep
2002
May
2004
Oct
2005
May
2007
Nov
2007
Jun
2008
Sep
2009
Oct
2010
Jan
2012
Sep
2013
Jun
2015
Jun 2016, Apr 2017, Aug 2019Jun 2017, Feb 2019Jul
2019
Nov
2020
Dec
2022
Marketing Name WonderMach3D
Rage
Rage
Pro
Rage
128
Radeon
7000
Radeon
8000
Radeon
9000
Radeon
X700/X800
Radeon
X1000
Radeon
HD 2000
Radeon
HD 3000
Radeon
HD 4000
Radeon
HD 5000
Radeon
HD 6000
Radeon
HD 7000
Radeon
200
Radeon
300
Radeon
400/500/600
Radeon
RX Vega, Radeon VII
Radeon
RX 5000
Radeon
RX 6000
Radeon
RX 7000
AMD supportDark Red x.svgYes check.svg
Kind2D3D
Instruction set architecture Not publicly known TeraScale instruction set GCN instruction set RDNA instruction set
Microarchitecture TeraScale 1
(VLIW)
TeraScale 2
(VLIW5)
TeraScale 2
(VLIW5)

up to 68xx
TeraScale 3
(VLIW4)

in 69xx [17] [18]
GCN 1st
gen
GCN 2nd
gen
GCN 3rd
gen
GCN 4th
gen
GCN 5th
gen
RDNA RDNA 2 RDNA 3
TypeFixed pipeline [lower-alpha 1] Programmable pixel & vertex pipelines Unified shader model
Direct3D 5.06.07.08.19.0
11 (9_2)
9.0b
11 (9_2)
9.0c
11 (9_3)
10.0
11 (10_0)
10.1
11 (10_1)
11 (11_0)11 (11_1)
12 (11_1)
11 (12_0)
12 (12_0)
11 (12_1)
12 (12_1)
11 (12_1)
12 (12_2)
Shader model 1.42.0+2.0b3.04.04.15.05.15.1
6.5
6.76.7
OpenGL 1.11.21.32.1 [lower-alpha 2] [19] 3.3 4.5 (on Linux: 4.5 (Mesa 3D 21.0)) [20] [21] [22] [lower-alpha 3] 4.6 (on Linux: 4.6 (Mesa 3D 20.0))
Vulkan 1.0
(Win 7+ or Mesa 17+)
1.2 (Adrenalin 20.1.2, Linux Mesa 3D 20.0)
1.3 (GCN 4 and above (with Adrenalin 22.1.2, Mesa 22.0))
1.3
OpenCL Close to Metal 1.1 (no Mesa 3D support)1.2 (on Linux: 1.1 (no Image support) with Mesa 3D)2.0 (Adrenalin driver on Win7+)
(on Linux: 1.1 (no Image support) with Mesa 3D, 2.0 with AMD drivers or AMD ROCm)
2.02.1 [23] ?
HSA / ROCm Yes check.svg?
Video decoding ASIC Avivo/UVD UVD+ UVD 2 UVD 2.2 UVD 3 UVD 4 UVD 4.2 UVD 5.0 or 6.0 UVD 6.3 UVD 7 [24] [lower-alpha 4] VCN 2.0 [24] [lower-alpha 4] VCN 3.0 [25] ?
Video encoding ASIC VCE 1.0 VCE 2.0 VCE 3.0 or 3.1 VCE 3.4 VCE 4.0 [24] [lower-alpha 4]
Fluid Motion ASIC [lower-alpha 5] Dark Red x.svgYes check.svgDark Red x.svg?
Power saving? PowerPlay PowerTune PowerTune & ZeroCore Power ?
TrueAudio Via dedicated DSP Via shaders?
FreeSync 1
2
?
HDCP [lower-alpha 6] ?1.41.4
2.2
1.4
2.2
2.3 [26]
?
PlayReady [lower-alpha 6] 3.0Dark Red x.svg3.0?
Supported displays [lower-alpha 7] 1–222–6?
Max. resolution ?2–6 ×
2560×1600
2–6 ×
4096×2160 @ 30 Hz
2–6 ×
5120×2880 @ 60 Hz
3 ×
7680×4320 @ 60 Hz [27]

7680×4320 @ 60 Hz PowerColor
?
/drm/radeon [lower-alpha 8] Yes check.svg?
/drm/amdgpu [lower-alpha 8] Experimental [28] Yes check.svg?
  1. The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. 1 2 3 The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. Video processing ASIC for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
  6. 1 2 To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  7. More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  8. 1 2 DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.

Mobile products

Graphics device drivers

AMD's proprietary graphics device driver "Catalyst"

AMD Catalyst is being developed for Microsoft Windows and Linux. As of July 2014, other operating systems are not officially supported. This may be different for the AMD FirePro brand, which is based on identical hardware but features OpenGL-certified graphics device drivers.

AMD Catalyst supports all features advertised for the Radeon brand.

The Radeon HD 4000 series has been transitioned to legacy support, where drivers will be updated only to fix bugs instead of being optimized for new applications. [29]

Free and open-source graphics device driver "Radeon"

The free and open-source drivers are primarily developed on Linux and for Linux, but have been ported to other operating systems as well. Each driver is composed out of five parts:

  1. Linux kernel component DRM
  2. Linux kernel component KMS driver: basically the device driver for the display controller
  3. user-space component libDRM
  4. user-space component in Mesa 3D
  5. a special and distinct 2D graphics device driver for X.Org Server, which is finally about to be replaced by Glamor

The free and open-source "Radeon" graphics driver supports most of the features implemented into the Radeon line of GPUs. [30]

The free and open-source "Radeon" graphics device drivers are not reverse engineered, but based on documentation released by AMD. [31]

See also

Related Research Articles

Radeon is a brand of computer products, including graphics processing units, random-access memory, RAM disk software, and solid-state drives, produced by Radeon Technologies Group, a division of Advanced Micro Devices (AMD). The brand was launched in 2000 by ATI Technologies, which was acquired by AMD in 2006 for US$5.4 billion.

The R520 is a graphics processing unit (GPU) developed by ATI Technologies and produced by TSMC. It was the first GPU produced using a 90 nm photolithography process.

<span class="mw-page-title-main">Radeon R100 series</span> Series of video cards

The Radeon R100 is the first generation of Radeon graphics chips from ATI Technologies. The line features 3D acceleration based upon Direct3D 7.0 and OpenGL 1.3, and all but the entry-level versions offloading host geometry calculations to a hardware transform and lighting (T&L) engine, a major improvement in features and performance compared to the preceding Rage design. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs. "R100" refers to the development codename of the initially released GPU of the generation. It is the basis for a variety of other succeeding products.

Unified Video Decoder is the name given to AMD's dedicated video decoding ASIC. There are multiple versions implementing a multitude of video codecs, such as H.264 and VC-1.

The Evergreen series is a family of GPUs developed by Advanced Micro Devices for its Radeon line under the ATI brand name. It was employed in Radeon HD 5000 graphics card series and competed directly with Nvidia's GeForce 400 Series.

AMD PowerPlay is the brand name for a set of technologies for the reduction of the energy consumption implemented in several of AMD's graphics processing units and APUs supported by their proprietary graphics device driver "Catalyst". AMD PowerPlay is also implemented into ATI/AMD chipsets which integrated graphics and into AMD's Imageon handheld chipset, that was sold to Qualcomm in 2008.

<span class="mw-page-title-main">Radeon HD 6000 series</span> Series of video cards

The Northern Islands series is a family of GPUs developed by Advanced Micro Devices (AMD) forming part of its Radeon-brand, based on the 40 nm process. Some models are based on TeraScale 2 (VLIW5), some on the new TeraScale 3 (VLIW4) introduced with them.

<span class="mw-page-title-main">Radeon HD 7000 series</span> Series of video cards

The Radeon HD 7000 series, codenamed "Southern Islands", is a family of GPUs developed by AMD, and manufactured on TSMC's 28 nm process. The primary competitor of Southern Islands, Nvidia's GeForce 600 Series, also shipped during Q1 2012, largely due to the immaturity of the 28 nm process.

<span class="mw-page-title-main">Radeon HD 8000 series</span> Family of GPUs by AMD

The Radeon HD 8000 series is a family of computer GPUs developed by AMD. AMD was initially rumored to release the family in the second quarter of 2013, with the cards manufactured on a 28 nm process and making use of the improved Graphics Core Next architecture. However the 8000 series turned out to be an OEM rebadge of the 7000 series.

<span class="mw-page-title-main">Radeon 200 series</span> Series of video cards

The Radeon 200 series is a series of graphics processors developed by AMD. These GPUs are manufactured on a 28 nm Gate-Last process through TSMC or Common Platform Alliance.

The graphics processing unit (GPU) codenamed the Radeon R600 is the foundation of the Radeon HD 2000/3000 series and the FireGL 2007 series video cards developed by ATI Technologies.

The graphics processing unit (GPU) codenamed Radeon R600 is the foundation of the Radeon HD 2000 series and the FireGL 2007 series video cards developed by ATI Technologies. The HD 2000 cards competed with nVidia's GeForce 8 series.

Radeon X800 is a series of graphics cards designed by ATI Technologies Inc. introduced in May of 2004.

The Radeon X700 (RV410) series replaced the X600 in September 2004. X700 Pro is clocked at 425 MHz core, and produced on a 0.11 micrometre process. RV410 used a layout consisting of 8 pixel pipelines connected to 4 ROPs while maintaining the 6 vertex shaders of X800. The 110 nm process was a cost-cutting process, designed not for high clock speeds but for reducing die size while maintaining high yields. An X700 XT was planned for production, and reviewed by various hardware web sites, but was never released. It was believed that X700 XT set too high of a clock ceiling for ATI to profitably produce. X700 XT was also not adequately competitive with nVidia's impressive GeForce 6600GT. ATI would go on produce a card in the X800 series to compete instead.

ATI released the Radeon X300 and X600 boards. These were based on the RV370 and RV380 GPU respectively. They were nearly identical to the chips used in Radeon 9550 and 9600, only differing in that they were native PCI Express offerings. These were very popular for Dell and other OEM companies to sell in various configurations; connectors: DVI vs. DMS-59, card height: full-height vs. half-height.

<span class="mw-page-title-main">Radeon 9000 series</span> Series of video cards

The R300 GPU, introduced in August 2002 and developed by ATI Technologies, is its third generation of GPU used in Radeon graphics cards. This GPU features 3D acceleration based upon Direct3D 9.0 and OpenGL 2.0, a major improvement in features and performance compared to the preceding R200 design. R300 was the first fully Direct3D 9-capable consumer graphics chip. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs.

The R200 is the second generation of GPUs used in Radeon graphics cards and developed by ATI Technologies. This GPU features 3D acceleration based upon Microsoft Direct3D 8.1 and OpenGL 1.3, a major improvement in features and performance compared to the preceding Radeon R100 design. The GPU also includes 2D GUI acceleration, video acceleration, and multiple display outputs. "R200" refers to the development codename of the initially released GPU of the generation. It is the basis for a variety of other succeeding products.

TeraScale is the codename for a family of graphics processing unit microarchitectures developed by ATI Technologies/AMD and their second microarchitecture implementing the unified shader model following Xenos. TeraScale replaced the old fixed-pipeline microarchitectures and competed directly with Nvidia's first unified shader microarchitecture named Tesla.

<span class="mw-page-title-main">Radeon 300 series</span> Series of video cards

The Radeon 300 series is a series of graphics processors developed by AMD. All of the GPUs of the series are produced in 28 nm format and use the Graphics Core Next (GCN) micro-architecture.

References

  1. "Driver Support for AMD Radeon HD 4000, HD 3000, HD 2000 and older Series". AMD . Retrieved 2018-04-21.
  2. "AMD Catalyst 12.1 Treiber Download für AMD Radeon AGP Produktserie: AMD Radeon HD 4xxx, AMD Radeon HD 3xxx und AMD Radeon HD 2xxx". AMD . Retrieved 2018-04-20.
  3. "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  4. "RadeonFeature". X.Org Foundation . Retrieved 2018-04-20.
  5. AMD Stream Processor First to Break 1 Teraflop Barrier and AMD Demonstrates the Cinema 2.0 Experience
  6. bit-tech.net - RV770: ATI Radeon HD 4850 & 4870 analysis | RV770 Graphics Architecture
  7. Anand Lal Shimpi & Derek Wilson (June 25, 2008). "The Radeon HD 4870 & 4850: AMD Wins at $199 and $299". AnandTech.
  8. Phoronix: AMD Releases Open-Source UVD Video Support
  9. "The Khronos Group". 4 June 2022.
  10. Jansen Ng (April 2, 2009). "ATI Launches Radeon HD 4890; Over 50,000 Already Shipped". DailyTech.
  11. Advanced Micro Devices - AMD Introduces the ATI Radeon HD 4600 Series Graphics Cards for the Masses, Delivering Up To Double the Game Performance of the Competition at the Same Price
  12. Advanced Micro Devices - ATI Radeon HD 4600 Series – Overview Archived 2009-03-18 at the Wayback Machine
  13. Softpedia - MSI Updates Radeon HD 4600 Series with HDMI Support
  14. tom's hardware - Radeon HD 4600
  15. Radeon HD 4350 Graphics Technology - Overview Archived 2008-10-03 at the Wayback Machine and Radeon HD 4550 Graphics Technology - Overview Archived 2008-10-03 at the Wayback Machine , retrieved October 3, 2008
  16. "AMD RS880 Databook" (PDF).
  17. "AMD Radeon HD 6900 (AMD Cayman) series graphics cards". HWlab. hw-lab.com. December 19, 2010. Archived from the original on August 23, 2022. Retrieved August 23, 2022. New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture
  18. "GPU Specs Database". TechPowerUp. Retrieved August 23, 2022.
  19. "NPOT Texture (OpenGL Wiki)". Khronos Group. Retrieved February 10, 2021.
  20. "AMD Radeon Software Crimson Edition Beta". AMD . Retrieved 2018-04-20.
  21. "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  22. "RadeonFeature". X.Org Foundation . Retrieved 2018-04-20.
  23. "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved January 1, 2021.
  24. 1 2 3 Killian, Zak (March 22, 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved March 23, 2017.
  25. Larabel, Michael (September 15, 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved January 1, 2021.
  26. Edmonds, Rich (February 4, 2022). "ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals". Windows Central. Retrieved November 1, 2022.
  27. "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on September 6, 2018. Retrieved June 13, 2017.
  28. Larabel, Michael (December 7, 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix . Retrieved December 7, 2016.
  29. http://support.amd.com/en-us/download/desktop/legacy?product=legacy2&os=Windows%207%20-%2064
  30. "RadeonFeature". Xorg.freedesktop.org. Retrieved 2014-07-06.
  31. "AMD Developer Guides". Archived from the original on 2013-07-16.