Hyperfinite equivalence relation

Last updated

In descriptive set theory and related areas of mathematics, a hyperfinite equivalence relation on a standard Borel space X is a Borel equivalence relation E with countable classes, that can, in a certain sense, be approximated by Borel equivalence relations that have finite classes.

Contents

Definitions

Definition 1. Let X be a standard Borel space, that is; it is a measurable space which arises by equipping a Polish space X with its σ-algebra of Borel subsets (and forgetting the topology). Let E be an equivalence relation on X. We will say that E is Borel if E is a Borel subset of the cartesian product of X with itself, when equipped with the product σ-algebra. We will say that E is finite (respectively, countable) if E has finite (respectively, countable) classes.

The above names might be misleading, since if X is an uncountable standard Borel space, the equivalence relation will be uncountable when considered as a set of ordered pairs from X.

Definition 2. Let E be a countable Borel equivalence relation on a standard Borel space X. We will say that E is hyperfinite if , where is an increasing sequence of finite Borel equivalence relations on X.

Intuitively, this means that there is a sequence finite equivalence relations on X, each finer then its predecessors, approximating E arbitrarily well.

Discussion

A major area of research in descriptive set theory is the classification of Borel equivalence relations, and in particular those which are countable. Among these, finite equivalence relations are considered to be the simplest (for instance, they admit Borel transversals). Therefore, it is natural to ask whether certain equivalence relations, which are not necessarily finite, can be approximated by finite equivalence relations. This turns out to be a notion which is both rich enough to encapsulate many natural equivalence relations appearing in mathematics, yet restrictive enough to allow deep theorems to develop.

It is also worthwhile to note that any countable equivalence relation E can be written down as an increasing union of finite equivalence relations. This can be done, for instance, by taking a partition of every class into classes of size two, then joining two classes in the new equivalence relation which are within the same E-class to form a partition with classes of size four, and so forth. The key observation is that this process requires the axiom of choice in general, and therefore it is not clear that this process generates Borel approximations. Indeed, there are countable Borel equivalence relations that are not hyperfinite, and so in particular the process described above will fail to generate Borel equivalence relations approximating the larger equivalence relation.

Examples and non-examples

Open problems

Weiss's conjecture

The above examples seem to indicate that Borel actions of "tame" countable groups induce hyperfinite equivalence relations. Weiss conjectured that any Borel action of a countable amenable group on a standard Borel space induces a hyperfinite orbit equivalence relation. While this is still an open problem, some partial results are known. [6]

The union problem

Another open problem in the area is whether a countable increasing union of hyperfinite equivalence relations is hyperfinite. [7] This is often referred to as the union problem.

Under certain conditions, it is known that a countable increasing union of hyperfinite equivalence relations is hyperfinite. For example, if the union of the equivalence relations has a property known as "Borel-boundedness" (which roughly means that any Borel assignment of functions to points on the space can be "eventually bounded" by such a Borel assignment which is constant on equivalence classes), then it is hyperfinite. However, it is unknown whether every such union satisfies this property. [8]

Measure-theoretic results

Under the assumption that the underlying space X is equipped with a Borel probability measure μ and that one is willing to remove sets of measure zero, the theory is much better understood. For instance, if the equivalence relation is generated by a Borel action of a countable amenable group, the resulting orbit equivalence relation is "μ-hyperfinite", meaning that it is hyperfinite on a subset of the space of full measure [1] (it is worthwhile to note that the action need not be measure-preserving, or even quasi-measure preserving). Since every countable Borel equivalence relation E on a standard non-atomic Borel probability space (X,) that admits a Borel transversal is a finite equivalence relation on a subset of full measure (this is essentially Feldman-Moore, together with Vitali's argument in his classical proof of the non-existence of a nontrivial invariant measure on the -algebra of all subsets of the real line), the above shows us that unlike equivalence relations which admit transversals, many examples of group actions which appear naturally in ergodic theory give rise to hyperfinite orbit equivalence relations (in particular, whenever the underlying space is a standard Borel space and the group is countable and amenable).


Similarly, a countable increasing union of hyperfinite equivalence relations on such a space is μ-hyperfinite as well.

See also

Notes

  1. 1 2 Connes, Feldman & Weiss 1995
  2. Gao & Jackson 2007
  3. Jackson, Kechris & Louveau 2002
  4. Marquis & Sabok 2020
  5. Kechris & Miller 2004
  6. Conley et al. 2020
  7. Dougherty, Jackson & Kechris 1994
  8. Coskey & Schneider 2017

Related Research Articles

<span class="mw-page-title-main">Equivalence relation</span> Mathematical concept for comparing objects

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive). If , then (symmetric). If and , then (transitive).

<span class="mw-page-title-main">Null set</span> Measurable set whose measure is zero

In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic.

In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive measure on subsets of G, was introduced by John von Neumann in 1929 under the German name "messbar" in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "mean".

In mathematics and functional analysis, a direct integral or Hilbert integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings.

The concept of system of imprimitivity is used in mathematics, particularly in algebra and analysis, both within the context of the theory of group representations. It was used by George Mackey as the basis for his theory of induced unitary representations of locally compact groups.

In mathematics, a Borel equivalence relation on a Polish space X is an equivalence relation on X that is a Borel subset of X × X.

In set theory, a prewellordering on a set is a preorder on that is strongly connected and well-founded in the sense that the induced relation defined by is a well-founded relation.

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In descriptive set theory, within mathematics, Wadge degrees are levels of complexity for sets of reals. Sets are compared by continuous reductions. The Wadge hierarchy is the structure of Wadge degrees. These concepts are named after William W. Wadge.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.

In descriptive set theory, specifically invariant descriptive set theory, countable Borel relations are a class of relations between standard Borel space which are particularly well behaved. This concept encapsulates various more specific concepts, such as that of a hyperfinite equivalence relation, but is of interest in and of itself.

References