Meagre set

Last updated

In the mathematical field of general topology, a meagre set (also called a meager set or a set of first category) is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.

Contents

The meagre subsets of a fixed space form a σ-ideal of subsets; that is, any subset of a meagre set is meagre, and the union of countably many meagre sets is meagre.

Meagre sets play an important role in the formulation of the notion of Baire space and of the Baire category theorem, which is used in the proof of several fundamental results of functional analysis.

Definitions

Throughout, will be a topological space.

The definition of meagre set uses the notion of a nowhere dense subset of that is, a subset of whose closure has empty interior. See the corresponding article for more details.

A subset of is called meagre in a meagre subset of or of the first category in if it is a countable union of nowhere dense subsets of . [1] Otherwise, the subset is called nonmeagre in a nonmeagre subset of or of the second category in [1] The qualifier "in " can be omitted if the ambient space is fixed and understood from context.

A topological space is called meagre (respectively, nonmeagre) if it is a meagre (respectively, nonmeagre) subset of itself.

A subset of is called comeagre in or residual in if its complement is meagre in . (This use of the prefix "co" is consistent with its use in other terms such as "cofinite".) A subset is comeagre in if and only if it is equal to a countable intersection of sets, each of whose interior is dense in

Remarks on terminology

The notions of nonmeagre and comeagre should not be confused. If the space is meagre, every subset is both meagre and comeagre, and there are no nonmeagre sets. If the space is nonmeager, no set is at the same time meagre and comeager, every comeagre set is nonmeagre, and there can be nonmeagre sets that are not comeagre, that is, with nonmeagre complement. See the Examples section below.

As an additional point of terminology, if a subset of a topological space is given the subspace topology induced from , one can talk about it being a meagre space, namely being a meagre subset of itself (when considered as a topological space in its own right). In this case can also be called a meagre subspace of , meaning a meagre space when given the subspace topology. Importantly, this is not the same as being meagre in the whole space . (See the Properties and Examples sections below for the relationship between the two.) Similarly, a nonmeagre subspace will be a set that is nonmeagre in itself, which is not the same as being nonmeagre in the whole space. Be aware however that in the context of topological vector spaces some authors may use the phrase "meagre/nonmeagre subspace" to mean a vector subspace that is a meagre/nonmeagre set relative to the whole space. [2]

The terms first category and second category were the original ones used by René Baire in his thesis of 1899. [3] The meagre terminology was introduced by Bourbaki in 1948. [4] [5]

Examples

The empty set is always a closed nowhere dense (and thus meagre) subset of every topological space.

In the nonmeagre space the set is meagre. The set is nonmeagre and comeagre.

In the nonmeagre space the set is nonmeagre. But it is not comeagre, as its complement is also nonmeagre.

A countable T1 space without isolated point is meagre. So it is also meagre in any space that contains it as a subspace. For example, is both a meagre subspace of (that is, meagre in itself with the subspace topology induced from ) and a meagre subset of

The Cantor set is nowhere dense in and hence meagre in But it is nonmeagre in itself, since it is a complete metric space.

The set is not nowhere dense in , but it is meagre in . It is nonmeagre in itself (since as a subspace it contains an isolated point).

The line is meagre in the plane But it is a nonmeagre subspace, that is, it is nonmeagre in itself.

The set is a meagre subset of even though its meagre subset is a nonmeagre subspace (that is, is not a meagre topological space). [6] A countable Hausdorff space without isolated points is meagre, whereas any topological space that contains an isolated point is nonmeagre. [6] Because the rational numbers are countable, they are meagre as a subset of the reals and as a space—that is, they do not form a Baire space.

Any topological space that contains an isolated point is nonmeagre [6] (because no set containing the isolated point can be nowhere dense). In particular, every nonempty discrete space is nonmeagre.

There is a subset of the real numbers that splits every nonempty open set into two nonmeagre sets. That is, for every nonempty open set , the sets and are both nonmeagre.

In the space of continuous real-valued functions on with the topology of uniform convergence, the set of continuous real-valued functions on that have a derivative at some point is meagre. [7] [8] Since is a complete metric space, it is nonmeagre. So the complement of , which consists of the continuous real-valued nowhere differentiable functions on is comeagre and nonmeagre. In particular that set is not empty. This is one way to show the existence of continuous nowhere differentiable functions.

Characterizations and sufficient conditions

Every nonempty Baire space is nonmeagre. In particular, by the Baire category theorem every nonempty complete metric space and every nonempty locally compact Hausdorff space is nonmeagre.

Every nonempty Baire space is nonmeagre but there exist nonmeagre spaces that are not Baire spaces. [6] Since complete (pseudo) metric spaces as well as Hausdorff locally compact spaces are Baire spaces, they are also nonmeagre spaces. [6]

Any subset of a meagre set is a meagre set, as is the union of countably many meagre sets. [9] If is a homeomorphism then a subset is meagre if and only if is meagre. [9]

Every nowhere dense subset is a meagre set. [9] Consequently, any closed subset of whose interior in is empty is of the first category of (that is, it is a meager subset of ).

The Banach category theorem [10] states that in any space the union of any family of open sets of the first category is of the first category.

All subsets and all countable unions of meagre sets are meagre. Thus the meagre subsets of a fixed space form a σ-ideal of subsets, a suitable notion of negligible set. Dually, all supersets and all countable intersections of comeagre sets are comeagre. Every superset of a nonmeagre set is nonmeagre.

Suppose where has the subspace topology induced from The set may be meagre in without being meagre in However the following results hold: [5]

And correspondingly for nonmeagre sets:

In particular, every subset of that is meagre in itself is meagre in Every subset of that is nonmeagre in is nonmeagre in itself. And for an open set or a dense set in being meagre in is equivalent to being meagre in itself, and similarly for the nonmeagre property.

A topological space is nonmeagre if and only if every countable intersection of dense open sets in is nonempty. [11]

Properties

A nonmeagre locally convex topological vector space is a barreled space. [6]

Every nowhere dense subset of is meagre. Consequently, any closed subset with empty interior is meagre. Thus a closed subset of that is of the second category in must have non-empty interior in [12] (because otherwise it would be nowhere dense and thus of the first category).

If is of the second category in and if are subsets of such that then at least one is of the second category in

Meagre subsets and Lebesgue measure

There exist nowhere dense subsets (which are thus meagre subsets) that have positive Lebesgue measure. [6]

A meagre set in need not have Lebesgue measure zero, and can even have full measure. For example, in the interval fat Cantor sets, like the Smith–Volterra–Cantor set, are closed nowhere dense and they can be constructed with a measure arbitrarily close to The union of a countable number of such sets with measure approaching gives a meagre subset of with measure [13]

Dually, there can be nonmeagre sets with measure zero. The complement of any meagre set of measure in (for example the one in the previous paragraph) has measure and is comeagre in and hence nonmeagre in since is a Baire space.

Here is another example of a nonmeagre set in with measure :

where is a sequence that enumerates the rational numbers.

Relation to Borel hierarchy

Just as a nowhere dense subset need not be closed, but is always contained in a closed nowhere dense subset (viz, its closure), a meagre set need not be an set (countable union of closed sets), but is always contained in an set made from nowhere dense sets (by taking the closure of each set).

Dually, just as the complement of a nowhere dense set need not be open, but has a dense interior (contains a dense open set), a comeagre set need not be a set (countable intersection of open sets), but contains a dense set formed from dense open sets.

Banach–Mazur game

Meagre sets have a useful alternative characterization in terms of the Banach–Mazur game. Let be a topological space, be a family of subsets of that have nonempty interiors such that every nonempty open set has a subset belonging to and be any subset of Then there is a Banach–Mazur game In the Banach–Mazur game, two players, and alternately choose successively smaller elements of to produce a sequence Player wins if the intersection of this sequence contains a point in ; otherwise, player wins.

Theorem  For any meeting the above criteria, player has a winning strategy if and only if is meagre.

Erdos–Sierpinski duality

Many arguments about meagre sets also apply to null sets, i.e. sets of Lebesgue measure 0. The Erdos–Sierpinski duality theorem states that if the continuum hypothesis holds, there is an involution from reals to reals where the image of a null set of reals is a meagre set, and vice versa. [14] In fact, the image of a set of reals under the map is null if and only if the original set was meagre, and vice versa. [15]

See also

Notes

    1. 1 2 Narici & Beckenstein 2011, p. 389.
    2. Schaefer, Helmut H. (1966). "Topological Vector Spaces". Macmillan.
    3. Baire, René (1899). "Sur les fonctions de variables réelles". Annali di Mat. Pura ed Appl. 3: 1–123., page 65
    4. Oxtoby, J. (1961). "Cartesian products of Baire spaces" (PDF). Fundamenta Mathematicae . 49 (2): 157–166. doi:10.4064/fm-49-2-157-166."Following Bourbaki [...], a topological space is called a Baire space if ..."
    5. 1 2 Bourbaki 1989, p. 192.
    6. 1 2 3 4 5 6 7 Narici & Beckenstein 2011, pp. 371–423.
    7. Banach, S. (1931). "Über die Baire'sche Kategorie gewisser Funktionenmengen". Studia Math. 3 (1): 174–179. doi: 10.4064/sm-3-1-174-179 .
    8. Willard 2004, Theorem 25.5.
    9. 1 2 3 Rudin 1991, p. 43.
    10. Oxtoby 1980, p. 62.
    11. Willard 2004, Theorem 25.2.
    12. Rudin 1991, pp. 42–43.
    13. "Is there a measure zero set which isn't meagre?". MathOverflow.
    14. Quintanilla, M. (2022). "The real numbers in inner models of set theory". arXiv: 2206.10754 . (p.25)
    15. S. Saito, The Erdos-Sierpinski Duality Theorem, notes. Accessed 18 January 2023.

    Bibliography

    Related Research Articles

    In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

    <span class="mw-page-title-main">Compact space</span> Type of mathematical space

    In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

    In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.

    In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

    This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

    In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

    In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

    In mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered anywhere. For example, the integers are nowhere dense among the reals, whereas the interval is not nowhere dense.

    The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space. It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis.

    <span class="mw-page-title-main">General topology</span> Branch of topology

    In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

    In mathematics, a topological space is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, and analysis, in particular functional analysis. For more motivation and applications, see the article Baire category theorem. The current article focuses more on characterizations and basic properties of Baire spaces per se.

    In the mathematical field of topology, a Gδ set is a subset of a topological space that is a countable intersection of open sets. The notation originated from the German nouns Gebiet'open set' and Durchschnitt'intersection'. Historically Gδ sets were also called inner limiting sets, but that terminology is not in use anymore. Gδ sets, and their dual, F𝜎 sets, are the second level of the Borel hierarchy.

    In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology.

    In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

    In mathematics, the particular point topology is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and pX. The collection

    <span class="mw-page-title-main">Locally connected space</span> Property of topological spaces

    In topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting of open connected sets.

    In mathematics, a topological space is said to be limit point compact or weakly countably compact if every infinite subset of has a limit point in This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.

    In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

    In mathematics, a scattered space is a topological space X that contains no nonempty dense-in-itself subset. Equivalently, every nonempty subset A of X contains a point isolated in A.