Klebsiella oxytoca

Last updated

Klebsiella oxytoca
Klebsiella oxytoca.jpg
Gram stain
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Enterobacteriaceae
Genus: Klebsiella
Species:
K. oxytoca
Binomial name
Klebsiella oxytoca
(Flügge 1886) Lautrop 1956
Klebsiella oxytoca on agar plate Klebsiella oxytoca NRRL B-199.jpg
Klebsiella oxytoca on agar plate

Klebsiella oxytoca is a Gram-negative, rod-shaped bacterium that is closely related to K. pneumoniae , from which it is distinguished by being indole-positive; it also has slightly different growth characteristics in that it is able to grow on melezitose, but not 3-hydroxybutyrate. It was first described in 1886 when it was isolated from sour milk and named Bacillus oxytocus perniciosus (from Greek oxus 'sour' + -tokos 'producing'). [1]

Contents

Klebsiella oxytoca is characterized by negative methyl red, positive VP, positive citrate, urea and TSI gas production, is AA, and negative for TSI sulfide, DNAse, growth on sulfide-indole motility medium and the phenylalanine deaminase test.

It is a diazotroph, able to colonise plant hosts and fix atmospheric nitrogen into a form which the plant can use. Association of K. oxytoca with the barley rhizosphere during an entire vegetative period has been demonstrated. The bacteria adhere strongly to root hairs, and less strongly to the surface of the zone of elongation and root cap mucilage. [2]

Like other enterobacteria, it is capable of acquiring antibiotic resistance, and isolates have been shown to produce extended-spectrum beta-lactamases as well as carbapenemases. [3]

Industrial uses

Klebsiella oxytoca has shown promise in industrial ethanol fuel production, [4] and is referenced as being used to produce hydrogen in patents filed by Nanologix, Inc.

Clinical significance and epidemiology.

Infections can result in colitis and sepsis. [5]

Outbreaks of antibiotic-resistant Klebsiella oxytoca have occurred in multiple hospitals and ICUs throughout the world, and handwashing stations have been identified as a potentially important environmental reservoir. [6]

Ecology

Houseflies (Musca domestica) have a mutualistic relationship with the bacterium K. oxytoca. This bacterium can live on the surface of the housefly eggs and has a deterrent effect on the fungi growing in manure, thus benefiting the fly larvae which are competing with the fungi for nutrients. [7]

Related Research Articles

<span class="mw-page-title-main">Beta-lactamase</span> Class of enzymes

Beta-lactamases, (β-lactamases) are enzymes produced by bacteria that provide multi-resistance to beta-lactam antibiotics such as penicillins, cephalosporins, cephamycins, monobactams and carbapenems (ertapenem), although carbapenems are relatively resistant to beta-lactamase. Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a beta-lactam (β-lactam) ring. Through hydrolysis, the enzyme lactamase breaks the β-lactam ring open, deactivating the molecule's antibacterial properties.

<i>Klebsiella pneumoniae</i> Species of bacterium

Klebsiella pneumoniae is a Gram-negative, non-motile, encapsulated, lactose-fermenting, facultative anaerobic, rod-shaped bacterium. It appears as a mucoid lactose fermenter on MacConkey agar.

<i>Klebsiella</i> Genus of gram-negative bacteria

Klebsiella is a genus of Gram-negative, oxidase-negative, rod-shaped bacteria with a prominent polysaccharide-based capsule.

Multiple drug resistance (MDR), multidrug resistance or multiresistance is antimicrobial resistance shown by a species of microorganism to at least one antimicrobial drug in three or more antimicrobial categories. Antimicrobial categories are classifications of antimicrobial agents based on their mode of action and specific to target organisms. The MDR types most threatening to public health are MDR bacteria that resist multiple antibiotics; other types include MDR viruses, parasites.

<span class="mw-page-title-main">Tigecycline</span> Chemical compound

Tigecycline, sold under the brand name Tygacil, is an tetracycline antibiotic medication for a number of bacterial infections. It is a glycylcycline administered intravenously. It was developed in response to the growing rate of antibiotic resistant bacteria such as Staphylococcus aureus, Acinetobacter baumannii, and E. coli. As a tetracycline derivative antibiotic, its structural modifications has expanded its therapeutic activity to include Gram-positive and Gram-negative organisms, including those of multi-drug resistance.

<span class="mw-page-title-main">Carbapenem</span> Class of highly effective antibiotic agents

Carbapenems are a class of very effective antibiotic agents most commonly used for the treatment of severe bacterial infections. This class of antibiotics is usually reserved for known or suspected multidrug-resistant (MDR) bacterial infections. Similar to penicillins and cephalosporins, carbapenems are members of the beta lactam class of antibiotics, which kill bacteria by binding to penicillin-binding proteins, thus inhibiting bacterial cell wall synthesis. However, these agents individually exhibit a broader spectrum of activity compared to most cephalosporins and penicillins. Furthermore, carbapenems are typically unaffected by emerging antibiotic resistance, even to other beta-lactams.

<span class="mw-page-title-main">Lincosamides</span> Group of antibiotics

Lincosamides are a class of antibiotics, which include lincomycin, clindamycin, and pirlimycin.

<span class="mw-page-title-main">Gemifloxacin</span> Chemical to treat chronic bronchitis

Gemifloxacin mesylate is an oral broad-spectrum quinolone antibacterial agent used in the treatment of acute bacterial exacerbation of chronic bronchitis and mild-to-moderate pneumonia. Vansen Pharma Inc. has licensed the active ingredient from LG Life Sciences of Korea.

<i>Enterobacter cloacae</i> Species of bacterium

Enterobacter cloacae is a clinically significant Gram-negative, facultatively-anaerobic, rod-shaped bacterium.

<span class="mw-page-title-main">Polypeptide antibiotic</span> Class of antibiotics

Polypeptide antibiotics are a chemically diverse class of anti-infective and antitumor antibiotics containing non-protein polypeptide chains. Examples of this class include actinomycin, bacitracin, colistin, and polymyxin B. Actinomycin-D has found use in cancer chemotherapy. Most other polypeptide antibiotics are too toxic for systemic administration, but can safely be administered topically to the skin as an antiseptic for shallow cuts and abrasions.

<span class="mw-page-title-main">Housefly</span> Species of insect

The housefly is a fly of the suborder Cyclorrhapha. It is believed to have evolved in the Cenozoic Era, possibly in the Middle East, and has spread all over the world as a commensal of humans. It is the most common fly species found in houses. Adults are gray to black, with four dark, longitudinal lines on the thorax, slightly hairy bodies, and a single pair of membranous wings. They have red eyes, set farther apart in the slightly larger female.

<span class="mw-page-title-main">New Delhi metallo-beta-lactamase 1</span> Enzyme

NDM-1 is an enzyme that makes bacteria resistant to a broad range of beta-lactam antibiotics. These include the antibiotics of the carbapenem family, which are a mainstay for the treatment of antibiotic-resistant bacterial infections. The gene for NDM-1 is one member of a large gene family that encodes beta-lactamase enzymes called carbapenemases. Bacteria that produce carbapenemases are often referred to in the news media as "superbugs" because infections caused by them are difficult to treat. Such bacteria are usually sensitive only to polymyxins and tigecycline.

Multidrug resistant Gram-negative bacteria are a type of Gram-negative bacteria with resistance to multiple antibiotics. They can cause bacteria infections that pose a serious and rapidly emerging threat for hospitalized patients and especially patients in intensive care units. Infections caused by MDR strains are correlated with increased morbidity, mortality, and prolonged hospitalization. Thus, not only do these bacteria pose a threat to global public health, but also create a significant burden to healthcare systems.

Carbapenem-resistant Enterobacteriaceae (CRE) or carbapenemase-producing Enterobacteriaceae (CPE) are Gram-negative bacteria that are resistant to the carbapenem class of antibiotics, considered the drugs of last resort for such infections. They are resistant because they produce an enzyme called a carbapenemase that disables the drug molecule. The resistance can vary from moderate to severe. Enterobacteriaceae are common commensals and infectious agents. Experts fear CRE as the new "superbug". The bacteria can kill up to half of patients who get bloodstream infections. Tom Frieden, former head of the Centers for Disease Control and Prevention has referred to CRE as "nightmare bacteria". Examples of enzymes found in certain types of CRE are KPC and NDM. KPC and NDM are enzymes that break down carbapenems and make them ineffective. Both of these enzymes, as well as the enzyme VIM have also been reported in Pseudomonas.

<span class="mw-page-title-main">Eravacycline</span> Chemical compound

Eravacycline is a synthetic halogenated tetracycline class antibiotic by Tetraphase Pharmaceuticals. It is closely related to tigecycline. It has a broad spectrum of activity including many multi-drug resistant strains of bacteria. Phase III studies in complicated intra-abdominal infections (cIAI) and complicated urinary tract infections (cUTI) were recently completed with mixed results. Eravacycline was granted fast track designation by the FDA and is currently available in USA.

Kluyvera is a Gram negative, facultatively anaerobic bacterial and motile genus from the family of Enterobacteriaceae which have peritrichous flagella. Kluyvera occur in water, soil and sewage. Kluyvera bacteria can cause opportunistic infections in immunocompromised patients.

ESKAPE is an acronym comprising the scientific names of six highly virulent and antibiotic resistant bacterial pathogens including: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. The acronym is sometimes extended to ESKAPEE to include Escherichia coli. This group of Gram-positive and Gram-negative bacteria can evade or 'escape' commonly used antibiotics due to their increasing multi-drug resistance (MDR). As a result, throughout the world, they are the major cause of life-threatening nosocomial or hospital-acquired infections in immunocompromised and critically ill patients who are most at risk. P. aeruginosa and S. aureus are some of the most ubiquitous pathogens in biofilms found in healthcare. P. aeruginosa is a Gram-negative, rod-shaped bacterium, commonly found in the gut flora, soil, and water that can be spread directly or indirectly to patients in healthcare settings. The pathogen can also be spread in other locations through contamination, including surfaces, equipment, and hands. The opportunistic pathogen can cause hospitalized patients to have infections in the lungs, blood, urinary tract, and in other body regions after surgery. S. aureus is a Gram-positive, cocci-shaped bacterium, residing in the environment and on the skin and nose of many healthy individuals. The bacterium can cause skin and bone infections, pneumonia, and other types of potentially serious infections if it enters the body. S. aureus has also gained resistance to many antibiotic treatments, making healing difficult. Because of natural and unnatural selective pressures and factors, antibiotic resistance in bacteria usually emerges through genetic mutation or acquires antibiotic-resistant genes (ARGs) through horizontal gene transfer - a genetic exchange process by which antibiotic resistance can spread.

Govindan Rajamohan is an Indian molecular microbiologist, biotechnologist and a Senior principal scientist at the CSIR-Institute of Microbial Technology. He is known for his research on healthcare related infections with special emphasis on Acinetobacter, Klebsiella, ESKAPE, Human microbiome and Thrombolysis. His studies have been documented by way of a number of articles and ResearchGate, an online repository of scientific articles has listed 21 of them. The Department of Biotechnology of the Government of India awarded him the National Bioscience Award for Career Development, one of the highest Indian science awards, for his contributions to biosciences, in 2013.

<span class="mw-page-title-main">Tilivalline</span> Chemical compound

Tilivalline is a nonribosomal enterotoxin and was the first naturally occurring pyrrolobenzodiazepine (PBD) to be associated with disease in the human intestine. Previous work has shown that PBD tilivalline produced by Klebsiella oxytoca was linked to the pathogenesis of colitis in animal model of antibiotic-associated hemorrhagic colitis (AAHC). Since the enteric bacterium K. oxytoca is part of the intestinal microbiota and tilivalline causes the pathogenesis of colitis, it is important to understand the biosynthesis and regulation of tilivalline activity.

References

  1. Flügge, Carl (1886). Die Mikroorganismen. Leipzig: F.C.W. Vogel.
  2. Brisse S, Grimont F, Grimont PA (2006). Prokaryotes . New York, NY: Springer New York. pp.  159–196. ISBN   9783540325246.
  3. Hoenigl, Martin; Valentin, Thomas; Zarfel, Gernot; Wuerstl, Benjamin; Leitner, Eva; Salzer, Helmut J. F.; Posch, Josefa; Krause, Robert; Grisold, Andrea J. (2012-04-01). "Nosocomial Outbreak of Klebsiella pneumoniae Carbapenemase-Producing Klebsiella oxytoca in Austria". Antimicrobial Agents and Chemotherapy. 56 (4): 2158–2161. doi:10.1128/AAC.05440-11. ISSN   0066-4804. PMC   3318378 . PMID   22290949.
  4. Dien B, Cotta M, Jeffries T (2003). "Bacteria engineered for fuel ethanol production: current status". Appl Microbiol Biotechnol. 63 (3): 258–66. doi:10.1007/s00253-003-1444-y. PMID   13680206. S2CID   10340191.
  5. Högenauer C, Langner C, Beubler E, et al. (December 2006). "Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis". N. Engl. J. Med. 355 (23): 2418–26. doi:10.1056/NEJMoa054765. PMID   17151365.
  6. Leitner, Eva; Zarfel, Gernot; Luxner, Josefa; Herzog, Kathrin; Pekard-Amenitsch, Shiva; Hoenigl, Martin; Valentin, Thomas; Feierl, Gebhard; Grisold, Andrea J. (2015-01-01). "Contaminated Handwashing Sinks as the Source of a Clonal Outbreak of KPC-2-Producing Klebsiella oxytoca on a Hematology Ward". Antimicrobial Agents and Chemotherapy. 59 (1): 714–716. doi:10.1128/AAC.04306-14. ISSN   0066-4804. PMC   4291428 . PMID   25348541.
  7. Lam, Kevin; Thu, Kelsie; Tsang, Michelle; Moore, Margo; Gries, Gerhard (2009). "Bacteria on housefly eggs, Musca domestica, suppress fungal growth in chicken manure through nutrient depletion or antifungal metabolites". Naturwissenschaften. 96 (9): 1127–1132. Bibcode:2009NW.....96.1127L. doi:10.1007/s00114-009-0574-1. PMID   19636523. S2CID   187752.